Solve for x (complex solution)
x=-i\sqrt{7-\pi }-1\approx -1-1.964282909i
x=-1+i\sqrt{7-\pi }\approx -1+1.964282909i
Graph
Share
Copied to clipboard
-x^{2}-2x+\pi -8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\left(\pi -8\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and \pi -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\left(\pi -8\right)}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\left(\pi -8\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4+4\pi -32}}{2\left(-1\right)}
Multiply 4 times \pi -8.
x=\frac{-\left(-2\right)±\sqrt{4\pi -28}}{2\left(-1\right)}
Add 4 to 4\pi -32.
x=\frac{-\left(-2\right)±2i\sqrt{7-\pi }}{2\left(-1\right)}
Take the square root of -28+4\pi .
x=\frac{2±2i\sqrt{7-\pi }}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±2i\sqrt{7-\pi }}{-2}
Multiply 2 times -1.
x=\frac{2+2i\sqrt{7-\pi }}{-2}
Now solve the equation x=\frac{2±2i\sqrt{7-\pi }}{-2} when ± is plus. Add 2 to 2i\sqrt{7-\pi }.
x=-i\sqrt{7-\pi }-1
Divide 2+2i\sqrt{7-\pi } by -2.
x=\frac{-2i\sqrt{7-\pi }+2}{-2}
Now solve the equation x=\frac{2±2i\sqrt{7-\pi }}{-2} when ± is minus. Subtract 2i\sqrt{7-\pi } from 2.
x=-1+i\sqrt{7-\pi }
Divide 2-2i\sqrt{7-\pi } by -2.
x=-i\sqrt{7-\pi }-1 x=-1+i\sqrt{7-\pi }
The equation is now solved.
-x^{2}-2x+\pi -8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-2x+\pi -8-\left(\pi -8\right)=-\left(\pi -8\right)
Subtract \pi -8 from both sides of the equation.
-x^{2}-2x=-\left(\pi -8\right)
Subtracting \pi -8 from itself leaves 0.
-x^{2}-2x=8-\pi
Subtract \pi -8 from 0.
\frac{-x^{2}-2x}{-1}=\frac{8-\pi }{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{2}{-1}\right)x=\frac{8-\pi }{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+2x=\frac{8-\pi }{-1}
Divide -2 by -1.
x^{2}+2x=\pi -8
Divide -\pi +8 by -1.
x^{2}+2x+1^{2}=\pi -8+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\pi -8+1
Square 1.
x^{2}+2x+1=\pi -7
Add \pi -8 to 1.
\left(x+1\right)^{2}=\pi -7
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\pi -7}
Take the square root of both sides of the equation.
x+1=i\sqrt{7-\pi } x+1=-i\sqrt{7-\pi }
Simplify.
x=-1+i\sqrt{7-\pi } x=-i\sqrt{7-\pi }-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}