Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. ϕ
Tick mark Image

Similar Problems from Web Search

Share

\frac{ϕ\left(2\times 4\sqrt{3}-3\sqrt{27}\right)}{\sqrt{6}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{ϕ\left(8\sqrt{3}-3\sqrt{27}\right)}{\sqrt{6}}
Multiply 2 and 4 to get 8.
\frac{ϕ\left(8\sqrt{3}-3\times 3\sqrt{3}\right)}{\sqrt{6}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{ϕ\left(8\sqrt{3}-9\sqrt{3}\right)}{\sqrt{6}}
Multiply -3 and 3 to get -9.
\frac{ϕ\left(-1\right)\sqrt{3}}{\sqrt{6}}
Combine 8\sqrt{3} and -9\sqrt{3} to get -\sqrt{3}.
\frac{ϕ\left(-1\right)\sqrt{3}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{ϕ\left(-1\right)\sqrt{3}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{ϕ\left(-1\right)\sqrt{3}\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{ϕ\left(-1\right)\sqrt{3}\sqrt{3}\sqrt{2}}{6}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{ϕ\left(-1\right)\times 3\sqrt{2}}{6}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{ϕ\left(-3\right)\sqrt{2}}{6}
Multiply -1 and 3 to get -3.
ϕ\left(-\frac{1}{2}\right)\sqrt{2}
Divide ϕ\left(-3\right)\sqrt{2} by 6 to get ϕ\left(-\frac{1}{2}\right)\sqrt{2}.