Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{\left(atx\right)^{2}+c}{x}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&c=0\text{ and }x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{\left(atx\right)^{2}+c}{x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&c=0\text{ and }x=0\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}a\in \mathrm{C}\text{, }&\left(c=bx\text{ and }t=0\right)\text{ or }\left(c=0\text{ and }x=0\right)\\a=-\frac{\sqrt{bx-c}}{tx}\text{; }a=\frac{\sqrt{bx-c}}{tx}\text{, }&x\neq 0\text{ and }t\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a\in \mathrm{R}\text{, }&\left(c=bx\text{ and }t=0\right)\text{ or }\left(c=0\text{ and }x=0\right)\\a=-\frac{\sqrt{bx-c}}{tx}\text{; }a=\frac{\sqrt{bx-c}}{tx}\text{, }&x\neq 0\text{ and }t\neq 0\text{ and }c\leq bx\end{matrix}\right.
Graph
Share
Copied to clipboard
t^{2}a^{2}x^{2}-bx+c=0
Expand \left(tax\right)^{2}.
-bx+c=-t^{2}a^{2}x^{2}
Subtract t^{2}a^{2}x^{2} from both sides. Anything subtracted from zero gives its negation.
-bx=-t^{2}a^{2}x^{2}-c
Subtract c from both sides.
-bx=-a^{2}t^{2}x^{2}-c
Reorder the terms.
\left(-x\right)b=-a^{2}t^{2}x^{2}-c
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{-a^{2}t^{2}x^{2}-c}{-x}
Divide both sides by -x.
b=\frac{-a^{2}t^{2}x^{2}-c}{-x}
Dividing by -x undoes the multiplication by -x.
b=xa^{2}t^{2}+\frac{c}{x}
Divide -c-x^{2}t^{2}a^{2} by -x.
t^{2}a^{2}x^{2}-bx+c=0
Expand \left(tax\right)^{2}.
-bx+c=-t^{2}a^{2}x^{2}
Subtract t^{2}a^{2}x^{2} from both sides. Anything subtracted from zero gives its negation.
-bx=-t^{2}a^{2}x^{2}-c
Subtract c from both sides.
-bx=-a^{2}t^{2}x^{2}-c
Reorder the terms.
\left(-x\right)b=-a^{2}t^{2}x^{2}-c
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{-a^{2}t^{2}x^{2}-c}{-x}
Divide both sides by -x.
b=\frac{-a^{2}t^{2}x^{2}-c}{-x}
Dividing by -x undoes the multiplication by -x.
b=xa^{2}t^{2}+\frac{c}{x}
Divide -a^{2}t^{2}x^{2}-c by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}