Skip to main content
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

t^{2}a^{2}x^{2}-bx+c=0
Expand \left(tax\right)^{2}.
-bx+c=-t^{2}a^{2}x^{2}
Subtract t^{2}a^{2}x^{2} from both sides. Anything subtracted from zero gives its negation.
-bx=-t^{2}a^{2}x^{2}-c
Subtract c from both sides.
-bx=-a^{2}t^{2}x^{2}-c
Reorder the terms.
\left(-x\right)b=-a^{2}t^{2}x^{2}-c
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{-a^{2}t^{2}x^{2}-c}{-x}
Divide both sides by -x.
b=\frac{-a^{2}t^{2}x^{2}-c}{-x}
Dividing by -x undoes the multiplication by -x.
b=xa^{2}t^{2}+\frac{c}{x}
Divide -c-x^{2}t^{2}a^{2} by -x.
t^{2}a^{2}x^{2}-bx+c=0
Expand \left(tax\right)^{2}.
-bx+c=-t^{2}a^{2}x^{2}
Subtract t^{2}a^{2}x^{2} from both sides. Anything subtracted from zero gives its negation.
-bx=-t^{2}a^{2}x^{2}-c
Subtract c from both sides.
-bx=-a^{2}t^{2}x^{2}-c
Reorder the terms.
\left(-x\right)b=-a^{2}t^{2}x^{2}-c
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{-a^{2}t^{2}x^{2}-c}{-x}
Divide both sides by -x.
b=\frac{-a^{2}t^{2}x^{2}-c}{-x}
Dividing by -x undoes the multiplication by -x.
b=xa^{2}t^{2}+\frac{c}{x}
Divide -a^{2}t^{2}x^{2}-c by -x.