Solve for a
a=\frac{\sqrt{2}}{2gt}
g\neq 0\text{ and }t\neq 0
Solve for g
g=\frac{\sqrt{2}}{2at}
a\neq 0\text{ and }t\neq 0
Share
Copied to clipboard
tag=\sqrt{\frac{\frac{\sqrt{2}}{2}}{\sqrt{2}}}
Calculate \sqrt{\frac{\sqrt{2}}{2}} to the power of 2 and get \frac{\sqrt{2}}{2}.
tag=\sqrt{\frac{\sqrt{2}}{2\sqrt{2}}}
Express \frac{\frac{\sqrt{2}}{2}}{\sqrt{2}} as a single fraction.
tag=\sqrt{\frac{\sqrt{2}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{2}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
tag=\sqrt{\frac{\sqrt{2}\sqrt{2}}{2\times 2}}
The square of \sqrt{2} is 2.
tag=\sqrt{\frac{2}{2\times 2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
tag=\sqrt{\frac{2}{4}}
Multiply 2 and 2 to get 4.
tag=\sqrt{\frac{1}{2}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
tag=\frac{\sqrt{1}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
tag=\frac{1}{\sqrt{2}}
Calculate the square root of 1 and get 1.
tag=\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
tag=\frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
2tag=\sqrt{2}
Multiply both sides of the equation by 2.
2gta=\sqrt{2}
The equation is in standard form.
\frac{2gta}{2gt}=\frac{\sqrt{2}}{2gt}
Divide both sides by 2tg.
a=\frac{\sqrt{2}}{2gt}
Dividing by 2tg undoes the multiplication by 2tg.
tag=\sqrt{\frac{\frac{\sqrt{2}}{2}}{\sqrt{2}}}
Calculate \sqrt{\frac{\sqrt{2}}{2}} to the power of 2 and get \frac{\sqrt{2}}{2}.
tag=\sqrt{\frac{\sqrt{2}}{2\sqrt{2}}}
Express \frac{\frac{\sqrt{2}}{2}}{\sqrt{2}} as a single fraction.
tag=\sqrt{\frac{\sqrt{2}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{2}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
tag=\sqrt{\frac{\sqrt{2}\sqrt{2}}{2\times 2}}
The square of \sqrt{2} is 2.
tag=\sqrt{\frac{2}{2\times 2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
tag=\sqrt{\frac{2}{4}}
Multiply 2 and 2 to get 4.
tag=\sqrt{\frac{1}{2}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
tag=\frac{\sqrt{1}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
tag=\frac{1}{\sqrt{2}}
Calculate the square root of 1 and get 1.
tag=\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
tag=\frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
2tag=\sqrt{2}
Multiply both sides of the equation by 2.
2atg=\sqrt{2}
The equation is in standard form.
\frac{2atg}{2at}=\frac{\sqrt{2}}{2at}
Divide both sides by 2ta.
g=\frac{\sqrt{2}}{2at}
Dividing by 2ta undoes the multiplication by 2ta.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}