Solve for o (complex solution)
\left\{\begin{matrix}o=-\frac{100-59x}{54sx}\text{, }&x\neq 0\text{ and }s\neq 0\\o\in \mathrm{C}\text{, }&x=\frac{100}{59}\text{ and }s=0\end{matrix}\right.
Solve for s (complex solution)
\left\{\begin{matrix}s=-\frac{100-59x}{54ox}\text{, }&x\neq 0\text{ and }o\neq 0\\s\in \mathrm{C}\text{, }&x=\frac{100}{59}\text{ and }o=0\end{matrix}\right.
Solve for o
\left\{\begin{matrix}o=-\frac{100-59x}{54sx}\text{, }&x\neq 0\text{ and }s\neq 0\\o\in \mathrm{R}\text{, }&x=\frac{100}{59}\text{ and }s=0\end{matrix}\right.
Solve for s
\left\{\begin{matrix}s=-\frac{100-59x}{54ox}\text{, }&x\neq 0\text{ and }o\neq 0\\s\in \mathrm{R}\text{, }&x=\frac{100}{59}\text{ and }o=0\end{matrix}\right.
Graph
Share
Copied to clipboard
so\times 108x+5900-118x=114\times 50
Use the distributive property to multiply 118 by 50-x.
so\times 108x+5900-118x=5700
Multiply 114 and 50 to get 5700.
so\times 108x-118x=5700-5900
Subtract 5900 from both sides.
so\times 108x-118x=-200
Subtract 5900 from 5700 to get -200.
so\times 108x=-200+118x
Add 118x to both sides.
108sxo=118x-200
The equation is in standard form.
\frac{108sxo}{108sx}=\frac{118x-200}{108sx}
Divide both sides by 108sx.
o=\frac{118x-200}{108sx}
Dividing by 108sx undoes the multiplication by 108sx.
o=\frac{59x-100}{54sx}
Divide -200+118x by 108sx.
so\times 108x+5900-118x=114\times 50
Use the distributive property to multiply 118 by 50-x.
so\times 108x+5900-118x=5700
Multiply 114 and 50 to get 5700.
so\times 108x-118x=5700-5900
Subtract 5900 from both sides.
so\times 108x-118x=-200
Subtract 5900 from 5700 to get -200.
so\times 108x=-200+118x
Add 118x to both sides.
108oxs=118x-200
The equation is in standard form.
\frac{108oxs}{108ox}=\frac{118x-200}{108ox}
Divide both sides by 108ox.
s=\frac{118x-200}{108ox}
Dividing by 108ox undoes the multiplication by 108ox.
s=\frac{59x-100}{54ox}
Divide -200+118x by 108ox.
so\times 108x+5900-118x=114\times 50
Use the distributive property to multiply 118 by 50-x.
so\times 108x+5900-118x=5700
Multiply 114 and 50 to get 5700.
so\times 108x-118x=5700-5900
Subtract 5900 from both sides.
so\times 108x-118x=-200
Subtract 5900 from 5700 to get -200.
so\times 108x=-200+118x
Add 118x to both sides.
108sxo=118x-200
The equation is in standard form.
\frac{108sxo}{108sx}=\frac{118x-200}{108sx}
Divide both sides by 108sx.
o=\frac{118x-200}{108sx}
Dividing by 108sx undoes the multiplication by 108sx.
o=\frac{59x-100}{54sx}
Divide -200+118x by 108sx.
so\times 108x+5900-118x=114\times 50
Use the distributive property to multiply 118 by 50-x.
so\times 108x+5900-118x=5700
Multiply 114 and 50 to get 5700.
so\times 108x-118x=5700-5900
Subtract 5900 from both sides.
so\times 108x-118x=-200
Subtract 5900 from 5700 to get -200.
so\times 108x=-200+118x
Add 118x to both sides.
108oxs=118x-200
The equation is in standard form.
\frac{108oxs}{108ox}=\frac{118x-200}{108ox}
Divide both sides by 108ox.
s=\frac{118x-200}{108ox}
Dividing by 108ox undoes the multiplication by 108ox.
s=\frac{59x-100}{54ox}
Divide -200+118x by 108ox.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}