Solve for g
g=-\frac{ie^{x}}{sx\left(e^{x}+1\right)}
x\neq 0\text{ and }s\neq 0\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }x=i\times 2\pi n_{2}+\pi i\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=-2\pi n_{1}i-\pi i
Solve for s
s=-\frac{ie^{x}}{gx\left(e^{x}+1\right)}
x\neq 0\text{ and }g\neq 0\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }x=i\times 2\pi n_{2}+\pi i\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=-2\pi n_{1}i-\pi i
Quiz
Complex Number
5 problems similar to:
\operatorname { sig } ( x ) = \frac { 1 } { 1 + e ^ { - x } }
Share
Copied to clipboard
isxg=\frac{1}{\frac{1}{e^{x}}+1}
The equation is in standard form.
\frac{isxg}{isx}=\frac{e^{x}}{\left(e^{x}+1\right)isx}
Divide both sides by isx.
g=\frac{e^{x}}{\left(e^{x}+1\right)isx}
Dividing by isx undoes the multiplication by isx.
g=-\frac{ie^{x}}{sx\left(e^{x}+1\right)}
Divide \frac{e^{x}}{e^{x}+1} by isx.
igxs=\frac{1}{\frac{1}{e^{x}}+1}
The equation is in standard form.
\frac{igxs}{igx}=\frac{e^{x}}{\left(e^{x}+1\right)igx}
Divide both sides by igx.
s=\frac{e^{x}}{\left(e^{x}+1\right)igx}
Dividing by igx undoes the multiplication by igx.
s=-\frac{ie^{x}}{gx\left(e^{x}+1\right)}
Divide \frac{e^{x}}{e^{x}+1} by igx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}