Solve for s
s=\frac{2\left(x+5\right)}{3\left(ix+2i\right)}
x\neq -2
Solve for x
x=-\frac{2\left(3is-5\right)}{3is-2}
s\neq -\frac{2}{3}i
Share
Copied to clipboard
3isx+2s\times \left(3i\right)-2\left(x+1\right)=8
Use the distributive property to multiply s\times \left(3i\right) by x+2.
3isx+6is-2\left(x+1\right)=8
Multiply 2 and 3i to get 6i.
3isx+6is-2x-2=8
Use the distributive property to multiply -2 by x+1.
3isx+6is-2=8+2x
Add 2x to both sides.
3isx+6is=8+2x+2
Add 2 to both sides.
3isx+6is=10+2x
Add 8 and 2 to get 10.
\left(3ix+6i\right)s=10+2x
Combine all terms containing s.
\left(3ix+6i\right)s=2x+10
The equation is in standard form.
\frac{\left(3ix+6i\right)s}{3ix+6i}=\frac{2x+10}{3ix+6i}
Divide both sides by 6i+3ix.
s=\frac{2x+10}{3ix+6i}
Dividing by 6i+3ix undoes the multiplication by 6i+3ix.
s=\frac{2\left(x+5\right)}{3\left(ix+2i\right)}
Divide 10+2x by 6i+3ix.
3isx+2s\times \left(3i\right)-2\left(x+1\right)=8
Use the distributive property to multiply s\times \left(3i\right) by x+2.
3isx+6is-2\left(x+1\right)=8
Multiply 2 and 3i to get 6i.
3isx+6is-2x-2=8
Use the distributive property to multiply -2 by x+1.
3isx-2x-2=8-6is
Subtract 6is from both sides.
3isx-2x=8-6is+2
Add 2 to both sides.
3isx-2x=10-6is
Add 8 and 2 to get 10.
\left(3is-2\right)x=10-6is
Combine all terms containing x.
\frac{\left(3is-2\right)x}{3is-2}=\frac{10-6is}{3is-2}
Divide both sides by 3is-2.
x=\frac{10-6is}{3is-2}
Dividing by 3is-2 undoes the multiplication by 3is-2.
x=\frac{2\left(5-3is\right)}{3is-2}
Divide 10-6is by 3is-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}