Solve for a
a=\frac{1}{fpr\left(e^{x}-1\right)}
x\neq 0\text{ and }f\neq 0\text{ and }r\neq 0\text{ and }p\neq 0
Solve for f
f=\frac{1}{apr\left(e^{x}-1\right)}
x\neq 0\text{ and }r\neq 0\text{ and }a\neq 0\text{ and }p\neq 0
Quiz
Linear Equation
5 problems similar to:
\operatorname { par } f ( x ) = \frac { x } { e ^ { x } - 1 }
Share
Copied to clipboard
fprxa=\frac{x}{e^{x}-1}
The equation is in standard form.
\frac{fprxa}{fprx}=\frac{x}{\left(e^{x}-1\right)fprx}
Divide both sides by prfx.
a=\frac{x}{\left(e^{x}-1\right)fprx}
Dividing by prfx undoes the multiplication by prfx.
a=\frac{1}{fpr\left(e^{x}-1\right)}
Divide \frac{x}{e^{x}-1} by prfx.
aprxf=\frac{x}{e^{x}-1}
The equation is in standard form.
\frac{aprxf}{aprx}=\frac{x}{\left(e^{x}-1\right)aprx}
Divide both sides by parx.
f=\frac{x}{\left(e^{x}-1\right)aprx}
Dividing by parx undoes the multiplication by parx.
f=\frac{1}{apr\left(e^{x}-1\right)}
Divide \frac{x}{e^{x}-1} by parx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}