Solve for l (complex solution)
\left\{\begin{matrix}l=-\frac{2-5\times 4^{x}}{2no\times 16^{x}}\text{, }&n\neq 0\text{ and }o\neq 0\\l\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}i}{\ln(2)}-\frac{\log_{2}\left(5\right)}{2}+\frac{1}{2}\text{ and }\left(\left(o=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}i}{\ln(2)}-\frac{\log_{2}\left(5\right)}{2}+\frac{1}{2}\right)\text{ or }n=0\right)\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}n=-\frac{2-5\times 4^{x}}{2lo\times 16^{x}}\text{, }&o\neq 0\text{ and }l\neq 0\\n\in \mathrm{C}\text{, }&\left(\left(l=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}i}{\ln(2)}-\frac{\log_{2}\left(5\right)}{2}+\frac{1}{2}\right)\text{ or }o=0\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}i}{\ln(2)}-\frac{\log_{2}\left(5\right)}{2}+\frac{1}{2}\end{matrix}\right.
Solve for l
\left\{\begin{matrix}l=-\frac{2-5\times 4^{x}}{2no\times 16^{x}}\text{, }&n\neq 0\text{ and }o\neq 0\\l\in \mathrm{R}\text{, }&x=\frac{-\log_{2}\left(5\right)+1}{2}\text{ and }\left(n=0\text{ or }o=0\right)\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{2-5\times 4^{x}}{2lo\times 16^{x}}\text{, }&o\neq 0\text{ and }l\neq 0\\n\in \mathrm{R}\text{, }&x=\frac{-\log_{2}\left(5\right)+1}{2}\text{ and }\left(o=0\text{ or }l=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
lon\times 4^{1+x}=10-4^{1-x}
Subtract 4^{1-x} from both sides.
no\times 4^{x+1}l=10-4^{-x+1}
The equation is in standard form.
\frac{no\times 4^{x+1}l}{no\times 4^{x+1}}=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}no\times 4^{x+1}}
Divide both sides by on\times 4^{1+x}.
l=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}no\times 4^{x+1}}
Dividing by on\times 4^{1+x} undoes the multiplication by on\times 4^{1+x}.
l=\frac{2\times 4^{-2x-1}\left(5\times 4^{x}-2\right)}{no}
Divide \frac{2\left(5\times 4^{x}-2\right)}{4^{x}} by on\times 4^{1+x}.
lon\times 4^{1+x}=10-4^{1-x}
Subtract 4^{1-x} from both sides.
lo\times 4^{x+1}n=10-4^{-x+1}
The equation is in standard form.
\frac{lo\times 4^{x+1}n}{lo\times 4^{x+1}}=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}lo\times 4^{x+1}}
Divide both sides by lo\times 4^{1+x}.
n=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}lo\times 4^{x+1}}
Dividing by lo\times 4^{1+x} undoes the multiplication by lo\times 4^{1+x}.
n=\frac{2\times 4^{-2x-1}\left(5\times 4^{x}-2\right)}{lo}
Divide \frac{2\left(5\times 4^{x}-2\right)}{4^{x}} by lo\times 4^{1+x}.
lon\times 4^{1+x}=10-4^{1-x}
Subtract 4^{1-x} from both sides.
no\times 4^{x+1}l=10-4^{-x+1}
The equation is in standard form.
\frac{no\times 4^{x+1}l}{no\times 4^{x+1}}=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}no\times 4^{x+1}}
Divide both sides by on\times 4^{1+x}.
l=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}no\times 4^{x+1}}
Dividing by on\times 4^{1+x} undoes the multiplication by on\times 4^{1+x}.
l=\frac{2\times 4^{-2x-1}\left(5\times 4^{x}-2\right)}{no}
Divide \frac{2\left(5\times 4^{x}-2\right)}{4^{x}} by on\times 4^{1+x}.
lon\times 4^{1+x}=10-4^{1-x}
Subtract 4^{1-x} from both sides.
lo\times 4^{x+1}n=10-4^{-x+1}
The equation is in standard form.
\frac{lo\times 4^{x+1}n}{lo\times 4^{x+1}}=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}lo\times 4^{x+1}}
Divide both sides by lo\times 4^{1+x}.
n=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}lo\times 4^{x+1}}
Dividing by lo\times 4^{1+x} undoes the multiplication by lo\times 4^{1+x}.
n=\frac{2\times 4^{-2x-1}\left(5\times 4^{x}-2\right)}{lo}
Divide \frac{2\left(5\times 4^{x}-2\right)}{4^{x}} by lo\times 4^{1+x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}