Skip to main content
Solve for l (complex solution)
Tick mark Image
Solve for n (complex solution)
Tick mark Image
Solve for l
Tick mark Image
Solve for n
Tick mark Image
Graph

Similar Problems from Web Search

Share

lon\times 4^{1+x}=10-4^{1-x}
Subtract 4^{1-x} from both sides.
no\times 4^{x+1}l=10-4^{-x+1}
The equation is in standard form.
\frac{no\times 4^{x+1}l}{no\times 4^{x+1}}=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}no\times 4^{x+1}}
Divide both sides by on\times 4^{1+x}.
l=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}no\times 4^{x+1}}
Dividing by on\times 4^{1+x} undoes the multiplication by on\times 4^{1+x}.
l=\frac{2\times 4^{-2x-1}\left(5\times 4^{x}-2\right)}{no}
Divide \frac{2\left(5\times 4^{x}-2\right)}{4^{x}} by on\times 4^{1+x}.
lon\times 4^{1+x}=10-4^{1-x}
Subtract 4^{1-x} from both sides.
lo\times 4^{x+1}n=10-4^{-x+1}
The equation is in standard form.
\frac{lo\times 4^{x+1}n}{lo\times 4^{x+1}}=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}lo\times 4^{x+1}}
Divide both sides by lo\times 4^{1+x}.
n=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}lo\times 4^{x+1}}
Dividing by lo\times 4^{1+x} undoes the multiplication by lo\times 4^{1+x}.
n=\frac{2\times 4^{-2x-1}\left(5\times 4^{x}-2\right)}{lo}
Divide \frac{2\left(5\times 4^{x}-2\right)}{4^{x}} by lo\times 4^{1+x}.
lon\times 4^{1+x}=10-4^{1-x}
Subtract 4^{1-x} from both sides.
no\times 4^{x+1}l=10-4^{-x+1}
The equation is in standard form.
\frac{no\times 4^{x+1}l}{no\times 4^{x+1}}=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}no\times 4^{x+1}}
Divide both sides by on\times 4^{1+x}.
l=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}no\times 4^{x+1}}
Dividing by on\times 4^{1+x} undoes the multiplication by on\times 4^{1+x}.
l=\frac{2\times 4^{-2x-1}\left(5\times 4^{x}-2\right)}{no}
Divide \frac{2\left(5\times 4^{x}-2\right)}{4^{x}} by on\times 4^{1+x}.
lon\times 4^{1+x}=10-4^{1-x}
Subtract 4^{1-x} from both sides.
lo\times 4^{x+1}n=10-4^{-x+1}
The equation is in standard form.
\frac{lo\times 4^{x+1}n}{lo\times 4^{x+1}}=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}lo\times 4^{x+1}}
Divide both sides by lo\times 4^{1+x}.
n=\frac{2\left(5\times 4^{x}-2\right)}{4^{x}lo\times 4^{x+1}}
Dividing by lo\times 4^{1+x} undoes the multiplication by lo\times 4^{1+x}.
n=\frac{2\times 4^{-2x-1}\left(5\times 4^{x}-2\right)}{lo}
Divide \frac{2\left(5\times 4^{x}-2\right)}{4^{x}} by lo\times 4^{1+x}.