Solve for n
\left\{\begin{matrix}n=\frac{\left(11x-47\right)\left(x+4\right)}{30o\left(ix-7i\right)}\text{, }&x\neq 7\text{ and }o\neq 0\text{ and }x\neq -4\\n\in \mathrm{C}\text{, }&x=\frac{47}{11}\text{ and }o=0\end{matrix}\right.
Solve for o
\left\{\begin{matrix}o=\frac{\left(11x-47\right)\left(x+4\right)}{30n\left(ix-7i\right)}\text{, }&x\neq 7\text{ and }n\neq 0\text{ and }x\neq -4\\o\in \mathrm{C}\text{, }&x=\frac{47}{11}\text{ and }n=0\end{matrix}\right.
Share
Copied to clipboard
ion\left(30x-210\right)\times 1-\left(30x+120\right)=11\left(x-7\right)\left(x+4\right)
Multiply both sides of the equation by 30\left(x-7\right)\left(x+4\right), the least common multiple of x+4,x-7,30.
ion\left(30x-210\right)-\left(30x+120\right)=11\left(x-7\right)\left(x+4\right)
Multiply i and 1 to get i.
30inox-210ino-\left(30x+120\right)=11\left(x-7\right)\left(x+4\right)
Use the distributive property to multiply ion by 30x-210.
30inox-210ino-30x-120=11\left(x-7\right)\left(x+4\right)
To find the opposite of 30x+120, find the opposite of each term.
30inox-210ino-30x-120=\left(11x-77\right)\left(x+4\right)
Use the distributive property to multiply 11 by x-7.
30inox-210ino-30x-120=11x^{2}-33x-308
Use the distributive property to multiply 11x-77 by x+4 and combine like terms.
30inox-210ino-120=11x^{2}-33x-308+30x
Add 30x to both sides.
30inox-210ino-120=11x^{2}-3x-308
Combine -33x and 30x to get -3x.
30inox-210ino=11x^{2}-3x-308+120
Add 120 to both sides.
30inox-210ino=11x^{2}-3x-188
Add -308 and 120 to get -188.
\left(30iox-210io\right)n=11x^{2}-3x-188
Combine all terms containing n.
\frac{\left(30iox-210io\right)n}{30iox-210io}=\frac{\left(11x-47\right)\left(x+4\right)}{30iox-210io}
Divide both sides by -210io+30iox.
n=\frac{\left(11x-47\right)\left(x+4\right)}{30iox-210io}
Dividing by -210io+30iox undoes the multiplication by -210io+30iox.
n=\frac{\left(11x-47\right)\left(x+4\right)}{30o\left(ix-7i\right)}
Divide \left(-47+11x\right)\left(4+x\right) by -210io+30iox.
ion\left(30x-210\right)\times 1-\left(30x+120\right)=11\left(x-7\right)\left(x+4\right)
Multiply both sides of the equation by 30\left(x-7\right)\left(x+4\right), the least common multiple of x+4,x-7,30.
ion\left(30x-210\right)-\left(30x+120\right)=11\left(x-7\right)\left(x+4\right)
Multiply i and 1 to get i.
30inox-210ino-\left(30x+120\right)=11\left(x-7\right)\left(x+4\right)
Use the distributive property to multiply ion by 30x-210.
30inox-210ino-30x-120=11\left(x-7\right)\left(x+4\right)
To find the opposite of 30x+120, find the opposite of each term.
30inox-210ino-30x-120=\left(11x-77\right)\left(x+4\right)
Use the distributive property to multiply 11 by x-7.
30inox-210ino-30x-120=11x^{2}-33x-308
Use the distributive property to multiply 11x-77 by x+4 and combine like terms.
30inox-210ino-120=11x^{2}-33x-308+30x
Add 30x to both sides.
30inox-210ino-120=11x^{2}-3x-308
Combine -33x and 30x to get -3x.
30inox-210ino=11x^{2}-3x-308+120
Add 120 to both sides.
30inox-210ino=11x^{2}-3x-188
Add -308 and 120 to get -188.
\left(30inx-210in\right)o=11x^{2}-3x-188
Combine all terms containing o.
\frac{\left(30inx-210in\right)o}{30inx-210in}=\frac{\left(11x-47\right)\left(x+4\right)}{30inx-210in}
Divide both sides by -210in+30inx.
o=\frac{\left(11x-47\right)\left(x+4\right)}{30inx-210in}
Dividing by -210in+30inx undoes the multiplication by -210in+30inx.
o=\frac{\left(11x-47\right)\left(x+4\right)}{30n\left(ix-7i\right)}
Divide \left(-47+11x\right)\left(4+x\right) by -210in+30inx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}