Solve for a
a=-\frac{19\sqrt{4355117949}}{7151261rs}
s\neq 0\text{ and }r\neq 0
Solve for r
r=-\frac{19\sqrt{4355117949}}{7151261as}
s\neq 0\text{ and }a\neq 0
Share
Copied to clipboard
ars=\frac{-5.51}{\sqrt{\frac{144^{2}}{21}+\frac{1.63^{2}}{21}}}
Subtract 80.6 from 75.09 to get -5.51.
ars=\frac{-5.51}{\sqrt{\frac{20736}{21}+\frac{1.63^{2}}{21}}}
Calculate 144 to the power of 2 and get 20736.
ars=\frac{-5.51}{\sqrt{\frac{6912}{7}+\frac{1.63^{2}}{21}}}
Reduce the fraction \frac{20736}{21} to lowest terms by extracting and canceling out 3.
ars=\frac{-5.51}{\sqrt{\frac{6912}{7}+\frac{2.6569}{21}}}
Calculate 1.63 to the power of 2 and get 2.6569.
ars=\frac{-5.51}{\sqrt{\frac{6912}{7}+\frac{26569}{210000}}}
Expand \frac{2.6569}{21} by multiplying both numerator and the denominator by 10000.
ars=\frac{-5.51}{\sqrt{\frac{207386569}{210000}}}
Add \frac{6912}{7} and \frac{26569}{210000} to get \frac{207386569}{210000}.
ars=\frac{-5.51}{\frac{\sqrt{207386569}}{\sqrt{210000}}}
Rewrite the square root of the division \sqrt{\frac{207386569}{210000}} as the division of square roots \frac{\sqrt{207386569}}{\sqrt{210000}}.
ars=\frac{-5.51}{\frac{\sqrt{207386569}}{100\sqrt{21}}}
Factor 210000=100^{2}\times 21. Rewrite the square root of the product \sqrt{100^{2}\times 21} as the product of square roots \sqrt{100^{2}}\sqrt{21}. Take the square root of 100^{2}.
ars=\frac{-5.51}{\frac{\sqrt{207386569}\sqrt{21}}{100\left(\sqrt{21}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{207386569}}{100\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
ars=\frac{-5.51}{\frac{\sqrt{207386569}\sqrt{21}}{100\times 21}}
The square of \sqrt{21} is 21.
ars=\frac{-5.51}{\frac{\sqrt{4355117949}}{100\times 21}}
To multiply \sqrt{207386569} and \sqrt{21}, multiply the numbers under the square root.
ars=\frac{-5.51}{\frac{\sqrt{4355117949}}{2100}}
Multiply 100 and 21 to get 2100.
ars=\frac{-5.51\times 2100}{\sqrt{4355117949}}
Divide -5.51 by \frac{\sqrt{4355117949}}{2100} by multiplying -5.51 by the reciprocal of \frac{\sqrt{4355117949}}{2100}.
ars=\frac{-5.51\times 2100\sqrt{4355117949}}{\left(\sqrt{4355117949}\right)^{2}}
Rationalize the denominator of \frac{-5.51\times 2100}{\sqrt{4355117949}} by multiplying numerator and denominator by \sqrt{4355117949}.
ars=\frac{-5.51\times 2100\sqrt{4355117949}}{4355117949}
The square of \sqrt{4355117949} is 4355117949.
ars=\frac{-11571\sqrt{4355117949}}{4355117949}
Multiply -5.51 and 2100 to get -11571.
ars=-\frac{19}{7151261}\sqrt{4355117949}
Divide -11571\sqrt{4355117949} by 4355117949 to get -\frac{19}{7151261}\sqrt{4355117949}.
rsa=-\frac{19\sqrt{4355117949}}{7151261}
The equation is in standard form.
\frac{rsa}{rs}=-\frac{\frac{19\sqrt{4355117949}}{7151261}}{rs}
Divide both sides by rs.
a=-\frac{\frac{19\sqrt{4355117949}}{7151261}}{rs}
Dividing by rs undoes the multiplication by rs.
a=-\frac{19\sqrt{4355117949}}{7151261rs}
Divide -\frac{19\sqrt{4355117949}}{7151261} by rs.
ars=\frac{-5.51}{\sqrt{\frac{144^{2}}{21}+\frac{1.63^{2}}{21}}}
Subtract 80.6 from 75.09 to get -5.51.
ars=\frac{-5.51}{\sqrt{\frac{20736}{21}+\frac{1.63^{2}}{21}}}
Calculate 144 to the power of 2 and get 20736.
ars=\frac{-5.51}{\sqrt{\frac{6912}{7}+\frac{1.63^{2}}{21}}}
Reduce the fraction \frac{20736}{21} to lowest terms by extracting and canceling out 3.
ars=\frac{-5.51}{\sqrt{\frac{6912}{7}+\frac{2.6569}{21}}}
Calculate 1.63 to the power of 2 and get 2.6569.
ars=\frac{-5.51}{\sqrt{\frac{6912}{7}+\frac{26569}{210000}}}
Expand \frac{2.6569}{21} by multiplying both numerator and the denominator by 10000.
ars=\frac{-5.51}{\sqrt{\frac{207386569}{210000}}}
Add \frac{6912}{7} and \frac{26569}{210000} to get \frac{207386569}{210000}.
ars=\frac{-5.51}{\frac{\sqrt{207386569}}{\sqrt{210000}}}
Rewrite the square root of the division \sqrt{\frac{207386569}{210000}} as the division of square roots \frac{\sqrt{207386569}}{\sqrt{210000}}.
ars=\frac{-5.51}{\frac{\sqrt{207386569}}{100\sqrt{21}}}
Factor 210000=100^{2}\times 21. Rewrite the square root of the product \sqrt{100^{2}\times 21} as the product of square roots \sqrt{100^{2}}\sqrt{21}. Take the square root of 100^{2}.
ars=\frac{-5.51}{\frac{\sqrt{207386569}\sqrt{21}}{100\left(\sqrt{21}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{207386569}}{100\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
ars=\frac{-5.51}{\frac{\sqrt{207386569}\sqrt{21}}{100\times 21}}
The square of \sqrt{21} is 21.
ars=\frac{-5.51}{\frac{\sqrt{4355117949}}{100\times 21}}
To multiply \sqrt{207386569} and \sqrt{21}, multiply the numbers under the square root.
ars=\frac{-5.51}{\frac{\sqrt{4355117949}}{2100}}
Multiply 100 and 21 to get 2100.
ars=\frac{-5.51\times 2100}{\sqrt{4355117949}}
Divide -5.51 by \frac{\sqrt{4355117949}}{2100} by multiplying -5.51 by the reciprocal of \frac{\sqrt{4355117949}}{2100}.
ars=\frac{-5.51\times 2100\sqrt{4355117949}}{\left(\sqrt{4355117949}\right)^{2}}
Rationalize the denominator of \frac{-5.51\times 2100}{\sqrt{4355117949}} by multiplying numerator and denominator by \sqrt{4355117949}.
ars=\frac{-5.51\times 2100\sqrt{4355117949}}{4355117949}
The square of \sqrt{4355117949} is 4355117949.
ars=\frac{-11571\sqrt{4355117949}}{4355117949}
Multiply -5.51 and 2100 to get -11571.
ars=-\frac{19}{7151261}\sqrt{4355117949}
Divide -11571\sqrt{4355117949} by 4355117949 to get -\frac{19}{7151261}\sqrt{4355117949}.
asr=-\frac{19\sqrt{4355117949}}{7151261}
The equation is in standard form.
\frac{asr}{as}=-\frac{\frac{19\sqrt{4355117949}}{7151261}}{as}
Divide both sides by as.
r=-\frac{\frac{19\sqrt{4355117949}}{7151261}}{as}
Dividing by as undoes the multiplication by as.
r=-\frac{19\sqrt{4355117949}}{7151261as}
Divide -\frac{19\sqrt{4355117949}}{7151261} by as.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}