Skip to main content
Verify
true
Tick mark Image

Similar Problems from Web Search

Share

\log_{e}\left(\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\right)=\log_{e}\left(2+\sqrt{3}\right)
Rationalize the denominator of \frac{1}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\log_{e}\left(\frac{2+\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}\right)=\log_{e}\left(2+\sqrt{3}\right)
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\log_{e}\left(\frac{2+\sqrt{3}}{4-3}\right)=\log_{e}\left(2+\sqrt{3}\right)
Square 2. Square \sqrt{3}.
\log_{e}\left(\frac{2+\sqrt{3}}{1}\right)=\log_{e}\left(2+\sqrt{3}\right)
Subtract 3 from 4 to get 1.
\log_{e}\left(2+\sqrt{3}\right)=\log_{e}\left(2+\sqrt{3}\right)
Anything divided by one gives itself.
\log_{e}\left(2+\sqrt{3}\right)-\log_{e}\left(2+\sqrt{3}\right)=0
Subtract \log_{e}\left(2+\sqrt{3}\right) from both sides.
0=0
Combine \log_{e}\left(2+\sqrt{3}\right) and -\log_{e}\left(2+\sqrt{3}\right) to get 0.
\text{true}
Compare 0 and 0.