\lim \frac { x ^ { 2 } - x } { x ^ { 3 } } = x ^ { 2 }
Solve for l
l=\frac{x^{2}}{-Im(\frac{1}{x^{2}})+Re(\frac{1}{x^{2}})Im(x)+Im(\frac{1}{x^{2}})Re(x)}
Im(\frac{1}{x^{2}})\left(Re(x)-1\right)+Re(\frac{1}{x^{2}})Im(x)\neq 0\text{ and }x\neq 0
Share
Copied to clipboard
lIm(\frac{x\left(x-1\right)}{x^{3}})=x^{2}
Factor the expressions that are not already factored in \frac{x^{2}-x}{x^{3}}.
lIm(\frac{x-1}{x^{2}})=x^{2}
Cancel out x in both numerator and denominator.
\left(Im(\frac{1}{x^{2}})\left(Re(x)-1\right)+Re(\frac{1}{x^{2}})Im(x)\right)l=x^{2}
The equation is in standard form.
\frac{\left(Im(\frac{1}{x^{2}})\left(Re(x)-1\right)+Re(\frac{1}{x^{2}})Im(x)\right)l}{Im(\frac{1}{x^{2}})\left(Re(x)-1\right)+Re(\frac{1}{x^{2}})Im(x)}=\frac{x^{2}}{Im(\frac{1}{x^{2}})\left(Re(x)-1\right)+Re(\frac{1}{x^{2}})Im(x)}
Divide both sides by \left(Re(x)-1\right)Im(x^{-2})+Im(x)Re(x^{-2}).
l=\frac{x^{2}}{Im(\frac{1}{x^{2}})\left(Re(x)-1\right)+Re(\frac{1}{x^{2}})Im(x)}
Dividing by \left(Re(x)-1\right)Im(x^{-2})+Im(x)Re(x^{-2}) undoes the multiplication by \left(Re(x)-1\right)Im(x^{-2})+Im(x)Re(x^{-2}).
l=\frac{x^{2}}{-Im(\frac{1}{x^{2}})+Re(\frac{1}{x^{2}})Im(x)+Im(\frac{1}{x^{2}})Re(x)}
Divide x^{2} by \left(Re(x)-1\right)Im(x^{-2})+Im(x)Re(x^{-2}).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}