Skip to main content
Solve for l
Tick mark Image

Similar Problems from Web Search

Share

lIm(\frac{x\left(x-1\right)}{x^{3}})=x^{2}
Factor the expressions that are not already factored in \frac{x^{2}-x}{x^{3}}.
lIm(\frac{x-1}{x^{2}})=x^{2}
Cancel out x in both numerator and denominator.
\left(Im(\frac{1}{x^{2}})\left(Re(x)-1\right)+Re(\frac{1}{x^{2}})Im(x)\right)l=x^{2}
The equation is in standard form.
\frac{\left(Im(\frac{1}{x^{2}})\left(Re(x)-1\right)+Re(\frac{1}{x^{2}})Im(x)\right)l}{Im(\frac{1}{x^{2}})\left(Re(x)-1\right)+Re(\frac{1}{x^{2}})Im(x)}=\frac{x^{2}}{Im(\frac{1}{x^{2}})\left(Re(x)-1\right)+Re(\frac{1}{x^{2}})Im(x)}
Divide both sides by \left(Re(x)-1\right)Im(x^{-2})+Im(x)Re(x^{-2}).
l=\frac{x^{2}}{Im(\frac{1}{x^{2}})\left(Re(x)-1\right)+Re(\frac{1}{x^{2}})Im(x)}
Dividing by \left(Re(x)-1\right)Im(x^{-2})+Im(x)Re(x^{-2}) undoes the multiplication by \left(Re(x)-1\right)Im(x^{-2})+Im(x)Re(x^{-2}).
l=\frac{x^{2}}{-Im(\frac{1}{x^{2}})+Re(\frac{1}{x^{2}})Im(x)+Im(\frac{1}{x^{2}})Re(x)}
Divide x^{2} by \left(Re(x)-1\right)Im(x^{-2})+Im(x)Re(x^{-2}).