Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
\frac{\lfloor \frac{21.2}{8}+0.3\rfloor }{6}
Add 18 and 3.2 to get 21.2.
\frac{\lfloor \frac{212}{80}+0.3\rfloor }{6}
Expand \frac{21.2}{8} by multiplying both numerator and the denominator by 10.
\frac{\lfloor \frac{53}{20}+0.3\rfloor }{6}
Reduce the fraction \frac{212}{80} to lowest terms by extracting and canceling out 4.
\frac{\lfloor \frac{53}{20}+\frac{3}{10}\rfloor }{6}
Convert decimal number 0.3 to fraction \frac{3}{10}.
\frac{\lfloor \frac{53}{20}+\frac{6}{20}\rfloor }{6}
Least common multiple of 20 and 10 is 20. Convert \frac{53}{20} and \frac{3}{10} to fractions with denominator 20.
\frac{\lfloor \frac{53+6}{20}\rfloor }{6}
Since \frac{53}{20} and \frac{6}{20} have the same denominator, add them by adding their numerators.
\frac{\lfloor \frac{59}{20}\rfloor }{6}
Add 53 and 6 to get 59.
\frac{\lfloor 2+\frac{19}{20}\rfloor }{6}
Dividing 59 by 20 gives 2 and remainder 19. Rewrite \frac{59}{20} as 2+\frac{19}{20}.
\frac{2}{6}
The floor of a real number a is the largest integer number less than or equal to a. The floor of 2+\frac{19}{20} is 2.
\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}