Solve for x, y, z
x=3
y=-1
z=4
Share
Copied to clipboard
x=-y-z+6
Solve x+y+z=6 for x.
2\left(-y-z+6\right)+y-z=1 3\left(-y-z+6\right)+2y+z=11
Substitute -y-z+6 for x in the second and third equation.
y=-3z+11 z=-\frac{1}{2}y+\frac{7}{2}
Solve these equations for y and z respectively.
z=-\frac{1}{2}\left(-3z+11\right)+\frac{7}{2}
Substitute -3z+11 for y in the equation z=-\frac{1}{2}y+\frac{7}{2}.
z=4
Solve z=-\frac{1}{2}\left(-3z+11\right)+\frac{7}{2} for z.
y=-3\times 4+11
Substitute 4 for z in the equation y=-3z+11.
y=-1
Calculate y from y=-3\times 4+11.
x=-\left(-1\right)-4+6
Substitute -1 for y and 4 for z in the equation x=-y-z+6.
x=3
Calculate x from x=-\left(-1\right)-4+6.
x=3 y=-1 z=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}