Solve for a_1, a_2, T
a_{1} = -\frac{30}{7} = -4\frac{2}{7} \approx -4.285714286
a_{2} = \frac{30}{7} = 4\frac{2}{7} \approx 4.285714286
T = \frac{200}{7} = 28\frac{4}{7} \approx 28.571428571
Share
Copied to clipboard
a_{1}=-a_{2}
Solve a_{1}+a_{2}=0 for a_{1}.
2\left(-1\right)a_{2}+T=20
Substitute -a_{2} for a_{1} in the equation 2a_{1}+T=20.
a_{2}=-10+\frac{1}{2}T T=50-5a_{2}
Solve the second equation for a_{2} and the third equation for T.
T=50-5\left(-10+\frac{1}{2}T\right)
Substitute -10+\frac{1}{2}T for a_{2} in the equation T=50-5a_{2}.
T=\frac{200}{7}
Solve T=50-5\left(-10+\frac{1}{2}T\right) for T.
a_{2}=-10+\frac{1}{2}\times \frac{200}{7}
Substitute \frac{200}{7} for T in the equation a_{2}=-10+\frac{1}{2}T.
a_{2}=\frac{30}{7}
Calculate a_{2} from a_{2}=-10+\frac{1}{2}\times \frac{200}{7}.
a_{1}=-\frac{30}{7}
Substitute \frac{30}{7} for a_{2} in the equation a_{1}=-a_{2}.
a_{1}=-\frac{30}{7} a_{2}=\frac{30}{7} T=\frac{200}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}