Solve for x, y
x=50
y=60
Graph
Share
Copied to clipboard
40x+15y=2900,x+y=110
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
40x+15y=2900
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
40x=-15y+2900
Subtract 15y from both sides of the equation.
x=\frac{1}{40}\left(-15y+2900\right)
Divide both sides by 40.
x=-\frac{3}{8}y+\frac{145}{2}
Multiply \frac{1}{40} times -15y+2900.
-\frac{3}{8}y+\frac{145}{2}+y=110
Substitute -\frac{3y}{8}+\frac{145}{2} for x in the other equation, x+y=110.
\frac{5}{8}y+\frac{145}{2}=110
Add -\frac{3y}{8} to y.
\frac{5}{8}y=\frac{75}{2}
Subtract \frac{145}{2} from both sides of the equation.
y=60
Divide both sides of the equation by \frac{5}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{8}\times 60+\frac{145}{2}
Substitute 60 for y in x=-\frac{3}{8}y+\frac{145}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-45+145}{2}
Multiply -\frac{3}{8} times 60.
x=50
Add \frac{145}{2} to -\frac{45}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=50,y=60
The system is now solved.
40x+15y=2900,x+y=110
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}40&15\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2900\\110\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}40&15\\1&1\end{matrix}\right))\left(\begin{matrix}40&15\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&15\\1&1\end{matrix}\right))\left(\begin{matrix}2900\\110\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}40&15\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&15\\1&1\end{matrix}\right))\left(\begin{matrix}2900\\110\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&15\\1&1\end{matrix}\right))\left(\begin{matrix}2900\\110\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{40-15}&-\frac{15}{40-15}\\-\frac{1}{40-15}&\frac{40}{40-15}\end{matrix}\right)\left(\begin{matrix}2900\\110\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25}&-\frac{3}{5}\\-\frac{1}{25}&\frac{8}{5}\end{matrix}\right)\left(\begin{matrix}2900\\110\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25}\times 2900-\frac{3}{5}\times 110\\-\frac{1}{25}\times 2900+\frac{8}{5}\times 110\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\60\end{matrix}\right)
Do the arithmetic.
x=50,y=60
Extract the matrix elements x and y.
40x+15y=2900,x+y=110
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
40x+15y=2900,40x+40y=40\times 110
To make 40x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 40.
40x+15y=2900,40x+40y=4400
Simplify.
40x-40x+15y-40y=2900-4400
Subtract 40x+40y=4400 from 40x+15y=2900 by subtracting like terms on each side of the equal sign.
15y-40y=2900-4400
Add 40x to -40x. Terms 40x and -40x cancel out, leaving an equation with only one variable that can be solved.
-25y=2900-4400
Add 15y to -40y.
-25y=-1500
Add 2900 to -4400.
y=60
Divide both sides by -25.
x+60=110
Substitute 60 for y in x+y=110. Because the resulting equation contains only one variable, you can solve for x directly.
x=50
Subtract 60 from both sides of the equation.
x=50,y=60
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}