Solve for x, y, z
x=c-2b
y=\frac{10b}{3}-\frac{4c}{3}+1
z=\frac{b}{3}-\frac{c}{3}+1
Share
Copied to clipboard
y=-2x-2z+3
Solve 2x+y+2z=3 for y.
x-2x-2z+3-z=b 3x+2\left(-2x-2z+3\right)-2z=c
Substitute -2x-2z+3 for y in the second and third equation.
x=-3z+3-b z=1-\frac{1}{6}x-\frac{1}{6}c
Solve these equations for x and z respectively.
z=1-\frac{1}{6}\left(-3z+3-b\right)-\frac{1}{6}c
Substitute -3z+3-b for x in the equation z=1-\frac{1}{6}x-\frac{1}{6}c.
z=1+\frac{1}{3}b-\frac{1}{3}c
Solve z=1-\frac{1}{6}\left(-3z+3-b\right)-\frac{1}{6}c for z.
x=-3\left(1+\frac{1}{3}b-\frac{1}{3}c\right)+3-b
Substitute 1+\frac{1}{3}b-\frac{1}{3}c for z in the equation x=-3z+3-b.
x=-2b+c
Calculate x from x=-3\left(1+\frac{1}{3}b-\frac{1}{3}c\right)+3-b.
y=-2\left(-2b+c\right)-2\left(1+\frac{1}{3}b-\frac{1}{3}c\right)+3
Substitute -2b+c for x and 1+\frac{1}{3}b-\frac{1}{3}c for z in the equation y=-2x-2z+3.
y=1+\frac{10}{3}b-\frac{4}{3}c
Calculate y from y=-2\left(-2b+c\right)-2\left(1+\frac{1}{3}b-\frac{1}{3}c\right)+3.
x=-2b+c y=1+\frac{10}{3}b-\frac{4}{3}c z=1+\frac{1}{3}b-\frac{1}{3}c
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}