Solve for x, y
x=115
y=60
Graph
Share
Copied to clipboard
10x+15y=2050,x+y=175
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+15y=2050
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-15y+2050
Subtract 15y from both sides of the equation.
x=\frac{1}{10}\left(-15y+2050\right)
Divide both sides by 10.
x=-\frac{3}{2}y+205
Multiply \frac{1}{10} times -15y+2050.
-\frac{3}{2}y+205+y=175
Substitute -\frac{3y}{2}+205 for x in the other equation, x+y=175.
-\frac{1}{2}y+205=175
Add -\frac{3y}{2} to y.
-\frac{1}{2}y=-30
Subtract 205 from both sides of the equation.
y=60
Multiply both sides by -2.
x=-\frac{3}{2}\times 60+205
Substitute 60 for y in x=-\frac{3}{2}y+205. Because the resulting equation contains only one variable, you can solve for x directly.
x=-90+205
Multiply -\frac{3}{2} times 60.
x=115
Add 205 to -90.
x=115,y=60
The system is now solved.
10x+15y=2050,x+y=175
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&15\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2050\\175\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&15\\1&1\end{matrix}\right))\left(\begin{matrix}10&15\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&15\\1&1\end{matrix}\right))\left(\begin{matrix}2050\\175\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&15\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&15\\1&1\end{matrix}\right))\left(\begin{matrix}2050\\175\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&15\\1&1\end{matrix}\right))\left(\begin{matrix}2050\\175\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-15}&-\frac{15}{10-15}\\-\frac{1}{10-15}&\frac{10}{10-15}\end{matrix}\right)\left(\begin{matrix}2050\\175\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&3\\\frac{1}{5}&-2\end{matrix}\right)\left(\begin{matrix}2050\\175\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 2050+3\times 175\\\frac{1}{5}\times 2050-2\times 175\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}115\\60\end{matrix}\right)
Do the arithmetic.
x=115,y=60
Extract the matrix elements x and y.
10x+15y=2050,x+y=175
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10x+15y=2050,10x+10y=10\times 175
To make 10x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 10.
10x+15y=2050,10x+10y=1750
Simplify.
10x-10x+15y-10y=2050-1750
Subtract 10x+10y=1750 from 10x+15y=2050 by subtracting like terms on each side of the equal sign.
15y-10y=2050-1750
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
5y=2050-1750
Add 15y to -10y.
5y=300
Add 2050 to -1750.
y=60
Divide both sides by 5.
x+60=175
Substitute 60 for y in x+y=175. Because the resulting equation contains only one variable, you can solve for x directly.
x=115
Subtract 60 from both sides of the equation.
x=115,y=60
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}