Skip to main content
Solve for I_x, I_2, I_1
Tick mark Image

Similar Problems from Web Search

Share

I_{x}=I_{2}+I_{1}-4
Solve -I_{x}+I_{2}+I_{1}=4 for I_{x}.
-4\left(I_{2}+I_{1}-4\right)=40I_{1}
Substitute I_{2}+I_{1}-4 for I_{x} in the equation -4I_{x}=40I_{1}.
I_{2}=4-11I_{1} I_{1}=\frac{3}{10}I_{2}
Solve the second equation for I_{2} and the third equation for I_{1}.
I_{1}=\frac{3}{10}\left(4-11I_{1}\right)
Substitute 4-11I_{1} for I_{2} in the equation I_{1}=\frac{3}{10}I_{2}.
I_{1}=\frac{12}{43}
Solve I_{1}=\frac{3}{10}\left(4-11I_{1}\right) for I_{1}.
I_{2}=4-11\times \frac{12}{43}
Substitute \frac{12}{43} for I_{1} in the equation I_{2}=4-11I_{1}.
I_{2}=\frac{40}{43}
Calculate I_{2} from I_{2}=4-11\times \frac{12}{43}.
I_{x}=\frac{40}{43}+\frac{12}{43}-4
Substitute \frac{40}{43} for I_{2} and \frac{12}{43} for I_{1} in the equation I_{x}=I_{2}+I_{1}-4.
I_{x}=-\frac{120}{43}
Calculate I_{x} from I_{x}=\frac{40}{43}+\frac{12}{43}-4.
I_{x}=-\frac{120}{43} I_{2}=\frac{40}{43} I_{1}=\frac{12}{43}
The system is now solved.