Solve for I_x, I_2, I_1
I_{x} = -\frac{120}{43} = -2\frac{34}{43} \approx -2.790697674
I_{2}=\frac{40}{43}\approx 0.930232558
I_{1}=\frac{12}{43}\approx 0.279069767
Share
Copied to clipboard
I_{x}=I_{2}+I_{1}-4
Solve -I_{x}+I_{2}+I_{1}=4 for I_{x}.
-4\left(I_{2}+I_{1}-4\right)=40I_{1}
Substitute I_{2}+I_{1}-4 for I_{x} in the equation -4I_{x}=40I_{1}.
I_{2}=4-11I_{1} I_{1}=\frac{3}{10}I_{2}
Solve the second equation for I_{2} and the third equation for I_{1}.
I_{1}=\frac{3}{10}\left(4-11I_{1}\right)
Substitute 4-11I_{1} for I_{2} in the equation I_{1}=\frac{3}{10}I_{2}.
I_{1}=\frac{12}{43}
Solve I_{1}=\frac{3}{10}\left(4-11I_{1}\right) for I_{1}.
I_{2}=4-11\times \frac{12}{43}
Substitute \frac{12}{43} for I_{1} in the equation I_{2}=4-11I_{1}.
I_{2}=\frac{40}{43}
Calculate I_{2} from I_{2}=4-11\times \frac{12}{43}.
I_{x}=\frac{40}{43}+\frac{12}{43}-4
Substitute \frac{40}{43} for I_{2} and \frac{12}{43} for I_{1} in the equation I_{x}=I_{2}+I_{1}-4.
I_{x}=-\frac{120}{43}
Calculate I_{x} from I_{x}=\frac{40}{43}+\frac{12}{43}-4.
I_{x}=-\frac{120}{43} I_{2}=\frac{40}{43} I_{1}=\frac{12}{43}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}