Solve for u, v
u=-6
v=8
Share
Copied to clipboard
2u-v+6=u-v
Consider the first equation. Multiply both sides of the equation by 2.
2u-v+6-u=-v
Subtract u from both sides.
u-v+6=-v
Combine 2u and -u to get u.
u-v+6+v=0
Add v to both sides.
u-v+v=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
u=-6
Combine -v and v to get 0.
\frac{-6+3v}{2}=2-\frac{-6-v}{2}
Consider the second equation. Insert the known values of variables into the equation.
-6+3v=4-\left(-6-v\right)
Multiply both sides of the equation by 2.
-6+3v=4+6+v
To find the opposite of -6-v, find the opposite of each term.
-6+3v=10+v
Add 4 and 6 to get 10.
-6+3v-v=10
Subtract v from both sides.
-6+2v=10
Combine 3v and -v to get 2v.
2v=10+6
Add 6 to both sides.
2v=16
Add 10 and 6 to get 16.
v=\frac{16}{2}
Divide both sides by 2.
v=8
Divide 16 by 2 to get 8.
u=-6 v=8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}