Evaluate (complex solution)
||a_{n}|-|a||<\frac{|a|}{2},\ \frac{|a|}{2}<|a_{n}|
Solve for a_n
a_{n}\in \left(-\frac{3|a|}{2},-\frac{|a|}{2}\right)\cup \left(\frac{|a|}{2},\frac{3|a|}{2}\right)
a\neq 0
Solve for a
\left\{\begin{matrix}a\in (|a_{n}|,2|a_{n}|)\cup (-2|a_{n}|,-|a_{n}|)\text{, }&a_{n}\neq 0\\a\in \mathrm{R}\setminus ((-\infty,-\frac{2a_{n}}{3}]\text{, }a_{n}\geq 0\cup (-a_{n},\infty)\cup [\frac{2a_{n}}{3},-\frac{2a_{n}}{3}]\text{, }a_{n}\leq 0\cup [2|a_{n}|,\infty)\cup (-\infty,a_{n})\cup (-a_{n},a_{n})\text{, }a_{n}>0\cup (-\infty,-2|a_{n}|])\text{, }&a_{n}<0\\a\in \mathrm{R}\setminus ((-\infty,\frac{2a_{n}}{3}]\text{, }a_{n}\leq 0\cup (a_{n},\infty)\cup [-\frac{2a_{n}}{3},\frac{2a_{n}}{3}]\text{, }a_{n}\geq 0\cup [2|a_{n}|,\infty)\cup (-\infty,-a_{n})\cup (a_{n},-a_{n})\text{, }a_{n}<0\cup (-\infty,-2|a_{n}|])\text{, }&a_{n}>0\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}