\left. \begin{array}{l}{ \frac { 3 } { 45 } \cdot \frac { 7 } { 8 } + \frac { 21 } { 45 } \cdot \frac { 6 } { 8 } }\\{ + \frac { 21 } { 45 } \cdot \frac { 5 } { 8 } }\end{array} \right.
Sort
\frac{7}{24},\frac{49}{120}
Evaluate
\frac{49}{120},\ \frac{7}{24}
Share
Copied to clipboard
sort(\frac{1}{15}\times \frac{7}{8}+\frac{21}{45}\times \frac{6}{8},\frac{21}{45}\times \frac{5}{8})
Reduce the fraction \frac{3}{45} to lowest terms by extracting and canceling out 3.
sort(\frac{1\times 7}{15\times 8}+\frac{21}{45}\times \frac{6}{8},\frac{21}{45}\times \frac{5}{8})
Multiply \frac{1}{15} times \frac{7}{8} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{7}{120}+\frac{21}{45}\times \frac{6}{8},\frac{21}{45}\times \frac{5}{8})
Do the multiplications in the fraction \frac{1\times 7}{15\times 8}.
sort(\frac{7}{120}+\frac{7}{15}\times \frac{6}{8},\frac{21}{45}\times \frac{5}{8})
Reduce the fraction \frac{21}{45} to lowest terms by extracting and canceling out 3.
sort(\frac{7}{120}+\frac{7}{15}\times \frac{3}{4},\frac{21}{45}\times \frac{5}{8})
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
sort(\frac{7}{120}+\frac{7\times 3}{15\times 4},\frac{21}{45}\times \frac{5}{8})
Multiply \frac{7}{15} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{7}{120}+\frac{21}{60},\frac{21}{45}\times \frac{5}{8})
Do the multiplications in the fraction \frac{7\times 3}{15\times 4}.
sort(\frac{7}{120}+\frac{7}{20},\frac{21}{45}\times \frac{5}{8})
Reduce the fraction \frac{21}{60} to lowest terms by extracting and canceling out 3.
sort(\frac{7}{120}+\frac{42}{120},\frac{21}{45}\times \frac{5}{8})
Least common multiple of 120 and 20 is 120. Convert \frac{7}{120} and \frac{7}{20} to fractions with denominator 120.
sort(\frac{7+42}{120},\frac{21}{45}\times \frac{5}{8})
Since \frac{7}{120} and \frac{42}{120} have the same denominator, add them by adding their numerators.
sort(\frac{49}{120},\frac{21}{45}\times \frac{5}{8})
Add 7 and 42 to get 49.
sort(\frac{49}{120},\frac{7}{15}\times \frac{5}{8})
Reduce the fraction \frac{21}{45} to lowest terms by extracting and canceling out 3.
sort(\frac{49}{120},\frac{7\times 5}{15\times 8})
Multiply \frac{7}{15} times \frac{5}{8} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{49}{120},\frac{35}{120})
Do the multiplications in the fraction \frac{7\times 5}{15\times 8}.
sort(\frac{49}{120},\frac{7}{24})
Reduce the fraction \frac{35}{120} to lowest terms by extracting and canceling out 5.
\frac{49}{120},\frac{35}{120}
Least common denominator of the numbers in the list \frac{49}{120},\frac{7}{24} is 120. Convert numbers in the list to fractions with denominator 120.
\frac{49}{120}
To sort the list, start from a single element \frac{49}{120}.
\frac{35}{120},\frac{49}{120}
Insert \frac{35}{120} to the appropriate location in the new list.
\frac{7}{24},\frac{49}{120}
Replace the obtained fractions with the initial values.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}