Solve for t, r
r=3
t=1
Share
Copied to clipboard
t\left(-2\right)+t=-1
Consider the second equation. Add t to both sides.
-t=-1
Combine t\left(-2\right) and t to get -t.
t=\frac{-1}{-1}
Divide both sides by -1.
t=1
Divide -1 by -1 to get 1.
1\left(-2\right)=1+r\left(-1\right)
Consider the first equation. Insert the known values of variables into the equation.
-2=1+r\left(-1\right)
Multiply 1 and -2 to get -2.
1+r\left(-1\right)=-2
Swap sides so that all variable terms are on the left hand side.
r\left(-1\right)=-2-1
Subtract 1 from both sides.
r\left(-1\right)=-3
Subtract 1 from -2 to get -3.
r=\frac{-3}{-1}
Divide both sides by -1.
r=3
Fraction \frac{-3}{-1} can be simplified to 3 by removing the negative sign from both the numerator and the denominator.
t=1 r=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}