Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=60,3x+1.5y=150
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=60
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+60
Subtract y from both sides of the equation.
3\left(-y+60\right)+1.5y=150
Substitute -y+60 for x in the other equation, 3x+1.5y=150.
-3y+180+1.5y=150
Multiply 3 times -y+60.
-1.5y+180=150
Add -3y to \frac{3y}{2}.
-1.5y=-30
Subtract 180 from both sides of the equation.
y=20
Divide both sides of the equation by -1.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-20+60
Substitute 20 for y in x=-y+60. Because the resulting equation contains only one variable, you can solve for x directly.
x=40
Add 60 to -20.
x=40,y=20
The system is now solved.
x+y=60,3x+1.5y=150
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\3&1.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\150\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\3&1.5\end{matrix}\right))\left(\begin{matrix}1&1\\3&1.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1.5\end{matrix}\right))\left(\begin{matrix}60\\150\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\3&1.5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1.5\end{matrix}\right))\left(\begin{matrix}60\\150\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1.5\end{matrix}\right))\left(\begin{matrix}60\\150\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1.5}{1.5-3}&-\frac{1}{1.5-3}\\-\frac{3}{1.5-3}&\frac{1}{1.5-3}\end{matrix}\right)\left(\begin{matrix}60\\150\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{2}{3}\\2&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}60\\150\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-60+\frac{2}{3}\times 150\\2\times 60-\frac{2}{3}\times 150\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\20\end{matrix}\right)
Do the arithmetic.
x=40,y=20
Extract the matrix elements x and y.
x+y=60,3x+1.5y=150
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x+3y=3\times 60,3x+1.5y=150
To make x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 1.
3x+3y=180,3x+1.5y=150
Simplify.
3x-3x+3y-1.5y=180-150
Subtract 3x+1.5y=150 from 3x+3y=180 by subtracting like terms on each side of the equal sign.
3y-1.5y=180-150
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
1.5y=180-150
Add 3y to -\frac{3y}{2}.
1.5y=30
Add 180 to -150.
y=20
Divide both sides of the equation by 1.5, which is the same as multiplying both sides by the reciprocal of the fraction.
3x+1.5\times 20=150
Substitute 20 for y in 3x+1.5y=150. Because the resulting equation contains only one variable, you can solve for x directly.
3x+30=150
Multiply 1.5 times 20.
3x=120
Subtract 30 from both sides of the equation.
x=40
Divide both sides by 3.
x=40,y=20
The system is now solved.