Solve for x_1, x_2, x_3
x_{1}=1
x_{2}=2
x_{3}=3
Share
Copied to clipboard
-7x_{1}-x_{3}=-10 9x_{1}+9x_{2}-7x_{3}=6 9x_{1}+6x_{2}+8x_{3}=45
Reorder the equations.
x_{3}=-7x_{1}+10
Solve -7x_{1}-x_{3}=-10 for x_{3}.
9x_{1}+9x_{2}-7\left(-7x_{1}+10\right)=6 9x_{1}+6x_{2}+8\left(-7x_{1}+10\right)=45
Substitute -7x_{1}+10 for x_{3} in the second and third equation.
x_{2}=\frac{76}{9}-\frac{58}{9}x_{1} x_{1}=\frac{6}{47}x_{2}+\frac{35}{47}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=\frac{6}{47}\left(\frac{76}{9}-\frac{58}{9}x_{1}\right)+\frac{35}{47}
Substitute \frac{76}{9}-\frac{58}{9}x_{1} for x_{2} in the equation x_{1}=\frac{6}{47}x_{2}+\frac{35}{47}.
x_{1}=1
Solve x_{1}=\frac{6}{47}\left(\frac{76}{9}-\frac{58}{9}x_{1}\right)+\frac{35}{47} for x_{1}.
x_{2}=\frac{76}{9}-\frac{58}{9}
Substitute 1 for x_{1} in the equation x_{2}=\frac{76}{9}-\frac{58}{9}x_{1}.
x_{2}=2
Calculate x_{2} from x_{2}=\frac{76}{9}-\frac{58}{9}.
x_{3}=-7+10
Substitute 1 for x_{1} in the equation x_{3}=-7x_{1}+10.
x_{3}=3
Calculate x_{3} from x_{3}=-7+10.
x_{1}=1 x_{2}=2 x_{3}=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}