Solve for x, y
x=-4
y=44
Graph
Share
Copied to clipboard
6x+5\left(y-20\right)+120=216,x+y=40
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+5\left(y-20\right)+120=216
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x+5y-100+120=216
Multiply 5 times y-20.
6x+5y+20=216
Add -100 to 120.
6x+5y=196
Subtract 20 from both sides of the equation.
6x=-5y+196
Subtract 5y from both sides of the equation.
x=\frac{1}{6}\left(-5y+196\right)
Divide both sides by 6.
x=-\frac{5}{6}y+\frac{98}{3}
Multiply \frac{1}{6} times -5y+196.
-\frac{5}{6}y+\frac{98}{3}+y=40
Substitute -\frac{5y}{6}+\frac{98}{3} for x in the other equation, x+y=40.
\frac{1}{6}y+\frac{98}{3}=40
Add -\frac{5y}{6} to y.
\frac{1}{6}y=\frac{22}{3}
Subtract \frac{98}{3} from both sides of the equation.
y=44
Multiply both sides by 6.
x=-\frac{5}{6}\times 44+\frac{98}{3}
Substitute 44 for y in x=-\frac{5}{6}y+\frac{98}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-110+98}{3}
Multiply -\frac{5}{6} times 44.
x=-4
Add \frac{98}{3} to -\frac{110}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-4,y=44
The system is now solved.
6x+5\left(y-20\right)+120=216,x+y=40
Put the equations in standard form and then use matrices to solve the system of equations.
6x+5\left(y-20\right)+120=216
Simplify the first equation to put it in standard form.
6x+5y-100+120=216
Multiply 5 times y-20.
6x+5y+20=216
Add -100 to 120.
6x+5y=196
Subtract 20 from both sides of the equation.
\left(\begin{matrix}6&5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}196\\40\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&5\\1&1\end{matrix}\right))\left(\begin{matrix}6&5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&1\end{matrix}\right))\left(\begin{matrix}196\\40\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&5\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&1\end{matrix}\right))\left(\begin{matrix}196\\40\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&1\end{matrix}\right))\left(\begin{matrix}196\\40\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-5}&-\frac{5}{6-5}\\-\frac{1}{6-5}&\frac{6}{6-5}\end{matrix}\right)\left(\begin{matrix}196\\40\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-5\\-1&6\end{matrix}\right)\left(\begin{matrix}196\\40\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}196-5\times 40\\-196+6\times 40\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\44\end{matrix}\right)
Do the arithmetic.
x=-4,y=44
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}