Solve for x, y
x=-\frac{100\left(2-a\right)}{a-3}
y=-\frac{100}{a-3}
a\neq 3
Graph
Share
Copied to clipboard
3x+ay=200,x+y=100
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+ay=200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=\left(-a\right)y+200
Subtract ay from both sides of the equation.
x=\frac{1}{3}\left(\left(-a\right)y+200\right)
Divide both sides by 3.
x=\left(-\frac{a}{3}\right)y+\frac{200}{3}
Multiply \frac{1}{3} times -ay+200.
\left(-\frac{a}{3}\right)y+\frac{200}{3}+y=100
Substitute \frac{-ay+200}{3} for x in the other equation, x+y=100.
\left(-\frac{a}{3}+1\right)y+\frac{200}{3}=100
Add -\frac{ay}{3} to y.
\left(-\frac{a}{3}+1\right)y=\frac{100}{3}
Subtract \frac{200}{3} from both sides of the equation.
y=\frac{100}{3-a}
Divide both sides by -\frac{a}{3}+1.
x=\left(-\frac{a}{3}\right)\times \frac{100}{3-a}+\frac{200}{3}
Substitute \frac{100}{3-a} for y in x=\left(-\frac{a}{3}\right)y+\frac{200}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{100a}{3\left(3-a\right)}+\frac{200}{3}
Multiply -\frac{a}{3} times \frac{100}{3-a}.
x=\frac{100\left(2-a\right)}{3-a}
Add \frac{200}{3} to -\frac{100a}{3\left(3-a\right)}.
x=\frac{100\left(2-a\right)}{3-a},y=\frac{100}{3-a}
The system is now solved.
3x+ay=200,x+y=100
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&a\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\100\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&a\\1&1\end{matrix}\right))\left(\begin{matrix}3&a\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&a\\1&1\end{matrix}\right))\left(\begin{matrix}200\\100\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&a\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&a\\1&1\end{matrix}\right))\left(\begin{matrix}200\\100\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&a\\1&1\end{matrix}\right))\left(\begin{matrix}200\\100\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-a}&-\frac{a}{3-a}\\-\frac{1}{3-a}&\frac{3}{3-a}\end{matrix}\right)\left(\begin{matrix}200\\100\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-a}\times 200+\left(-\frac{a}{3-a}\right)\times 100\\\left(-\frac{1}{3-a}\right)\times 200+\frac{3}{3-a}\times 100\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{100\left(a-2\right)}{3-a}\\\frac{100}{3-a}\end{matrix}\right)
Do the arithmetic.
x=-\frac{100\left(a-2\right)}{3-a},y=\frac{100}{3-a}
Extract the matrix elements x and y.
3x+ay=200,x+y=100
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x+ay=200,3x+3y=3\times 100
To make 3x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 3.
3x+ay=200,3x+3y=300
Simplify.
3x-3x+ay-3y=200-300
Subtract 3x+3y=300 from 3x+ay=200 by subtracting like terms on each side of the equal sign.
ay-3y=200-300
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
\left(a-3\right)y=200-300
Add ay to -3y.
\left(a-3\right)y=-100
Add 200 to -300.
y=-\frac{100}{a-3}
Divide both sides by a-3.
x-\frac{100}{a-3}=100
Substitute -\frac{100}{a-3} for y in x+y=100. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{100\left(a-2\right)}{a-3}
Add \frac{100}{a-3} to both sides of the equation.
x=\frac{100\left(a-2\right)}{a-3},y=-\frac{100}{a-3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}