Solve for x, y
x=20
y=35
Graph
Share
Copied to clipboard
25x+15y=1025,x+y=55
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
25x+15y=1025
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
25x=-15y+1025
Subtract 15y from both sides of the equation.
x=\frac{1}{25}\left(-15y+1025\right)
Divide both sides by 25.
x=-\frac{3}{5}y+41
Multiply \frac{1}{25} times -15y+1025.
-\frac{3}{5}y+41+y=55
Substitute -\frac{3y}{5}+41 for x in the other equation, x+y=55.
\frac{2}{5}y+41=55
Add -\frac{3y}{5} to y.
\frac{2}{5}y=14
Subtract 41 from both sides of the equation.
y=35
Divide both sides of the equation by \frac{2}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{5}\times 35+41
Substitute 35 for y in x=-\frac{3}{5}y+41. Because the resulting equation contains only one variable, you can solve for x directly.
x=-21+41
Multiply -\frac{3}{5} times 35.
x=20
Add 41 to -21.
x=20,y=35
The system is now solved.
25x+15y=1025,x+y=55
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}25&15\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1025\\55\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}25&15\\1&1\end{matrix}\right))\left(\begin{matrix}25&15\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&15\\1&1\end{matrix}\right))\left(\begin{matrix}1025\\55\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}25&15\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&15\\1&1\end{matrix}\right))\left(\begin{matrix}1025\\55\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&15\\1&1\end{matrix}\right))\left(\begin{matrix}1025\\55\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25-15}&-\frac{15}{25-15}\\-\frac{1}{25-15}&\frac{25}{25-15}\end{matrix}\right)\left(\begin{matrix}1025\\55\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&-\frac{3}{2}\\-\frac{1}{10}&\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}1025\\55\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 1025-\frac{3}{2}\times 55\\-\frac{1}{10}\times 1025+\frac{5}{2}\times 55\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\35\end{matrix}\right)
Do the arithmetic.
x=20,y=35
Extract the matrix elements x and y.
25x+15y=1025,x+y=55
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
25x+15y=1025,25x+25y=25\times 55
To make 25x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 25.
25x+15y=1025,25x+25y=1375
Simplify.
25x-25x+15y-25y=1025-1375
Subtract 25x+25y=1375 from 25x+15y=1025 by subtracting like terms on each side of the equal sign.
15y-25y=1025-1375
Add 25x to -25x. Terms 25x and -25x cancel out, leaving an equation with only one variable that can be solved.
-10y=1025-1375
Add 15y to -25y.
-10y=-350
Add 1025 to -1375.
y=35
Divide both sides by -10.
x+35=55
Substitute 35 for y in x+y=55. Because the resulting equation contains only one variable, you can solve for x directly.
x=20
Subtract 35 from both sides of the equation.
x=20,y=35
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}