Solve for x_1, x_2, x_3
x_{1}=3
x_{2}=0
x_{3}=-2
Share
Copied to clipboard
x_{3}=-2x_{1}-3x_{2}+4
Solve 2x_{1}+3x_{2}+x_{3}=4 for x_{3}.
x_{1}+2x_{2}-2\left(-2x_{1}-3x_{2}+4\right)=7 2x_{1}-5x_{2}+3\left(-2x_{1}-3x_{2}+4\right)=0
Substitute -2x_{1}-3x_{2}+4 for x_{3} in the second and third equation.
x_{2}=\frac{15}{8}-\frac{5}{8}x_{1} x_{1}=3-\frac{7}{2}x_{2}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=3-\frac{7}{2}\left(\frac{15}{8}-\frac{5}{8}x_{1}\right)
Substitute \frac{15}{8}-\frac{5}{8}x_{1} for x_{2} in the equation x_{1}=3-\frac{7}{2}x_{2}.
x_{1}=3
Solve x_{1}=3-\frac{7}{2}\left(\frac{15}{8}-\frac{5}{8}x_{1}\right) for x_{1}.
x_{2}=\frac{15}{8}-\frac{5}{8}\times 3
Substitute 3 for x_{1} in the equation x_{2}=\frac{15}{8}-\frac{5}{8}x_{1}.
x_{2}=0
Calculate x_{2} from x_{2}=\frac{15}{8}-\frac{5}{8}\times 3.
x_{3}=-2\times 3-3\times 0+4
Substitute 0 for x_{2} and 3 for x_{1} in the equation x_{3}=-2x_{1}-3x_{2}+4.
x_{3}=-2
Calculate x_{3} from x_{3}=-2\times 3-3\times 0+4.
x_{1}=3 x_{2}=0 x_{3}=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}