\left. \begin{array} { r } { 2 x ^ { 2 } - x + 3 } \\ { x ^ { 2 } + 2 x - 5 } \\ { 3 x ^ { 2 } - x - 3 } \end{array} \right.
Least Common Multiple
\frac{\left(2x^{2}-x+3\right)\left(\left(6x-1\right)^{2}-37\right)\left(\left(x+1\right)^{2}-6\right)}{12}
Evaluate
2x^{2}-x+3,\ x^{2}+2x-5,\ 3x^{2}-x-3
Graph
Share
Copied to clipboard
x^{2}+2x-5=\left(x-\left(\sqrt{6}-1\right)\right)\left(x-\left(-\sqrt{6}-1\right)\right) 3x^{2}-x-3=3\left(x-\left(-\frac{1}{6}\sqrt{37}+\frac{1}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{37}+\frac{1}{6}\right)\right)
Factor the expressions that are not already factored.
3\left(x-\left(-\sqrt{6}-1\right)\right)\left(x-\left(\sqrt{6}-1\right)\right)\left(x-\frac{1-\sqrt{37}}{6}\right)\left(x-\frac{\sqrt{37}+1}{6}\right)\left(2x^{2}-x+3\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
6x^{6}+7x^{5}-36x^{4}+33x^{3}-29x^{2}-18x+45
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}