Skip to main content
Solve for m, b
Tick mark Image

Similar Problems from Web Search

Share

94m+b=1239
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
61m+b=810
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
94m+b=1239,61m+b=810
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
94m+b=1239
Choose one of the equations and solve it for m by isolating m on the left hand side of the equal sign.
94m=-b+1239
Subtract b from both sides of the equation.
m=\frac{1}{94}\left(-b+1239\right)
Divide both sides by 94.
m=-\frac{1}{94}b+\frac{1239}{94}
Multiply \frac{1}{94} times -b+1239.
61\left(-\frac{1}{94}b+\frac{1239}{94}\right)+b=810
Substitute \frac{-b+1239}{94} for m in the other equation, 61m+b=810.
-\frac{61}{94}b+\frac{75579}{94}+b=810
Multiply 61 times \frac{-b+1239}{94}.
\frac{33}{94}b+\frac{75579}{94}=810
Add -\frac{61b}{94} to b.
\frac{33}{94}b=\frac{561}{94}
Subtract \frac{75579}{94} from both sides of the equation.
b=17
Divide both sides of the equation by \frac{33}{94}, which is the same as multiplying both sides by the reciprocal of the fraction.
m=-\frac{1}{94}\times 17+\frac{1239}{94}
Substitute 17 for b in m=-\frac{1}{94}b+\frac{1239}{94}. Because the resulting equation contains only one variable, you can solve for m directly.
m=\frac{-17+1239}{94}
Multiply -\frac{1}{94} times 17.
m=13
Add \frac{1239}{94} to -\frac{17}{94} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=13,b=17
The system is now solved.
94m+b=1239
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
61m+b=810
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
94m+b=1239,61m+b=810
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}94&1\\61&1\end{matrix}\right)\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}1239\\810\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}94&1\\61&1\end{matrix}\right))\left(\begin{matrix}94&1\\61&1\end{matrix}\right)\left(\begin{matrix}m\\b\end{matrix}\right)=inverse(\left(\begin{matrix}94&1\\61&1\end{matrix}\right))\left(\begin{matrix}1239\\810\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}94&1\\61&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\b\end{matrix}\right)=inverse(\left(\begin{matrix}94&1\\61&1\end{matrix}\right))\left(\begin{matrix}1239\\810\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}m\\b\end{matrix}\right)=inverse(\left(\begin{matrix}94&1\\61&1\end{matrix}\right))\left(\begin{matrix}1239\\810\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{94-61}&-\frac{1}{94-61}\\-\frac{61}{94-61}&\frac{94}{94-61}\end{matrix}\right)\left(\begin{matrix}1239\\810\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{33}&-\frac{1}{33}\\-\frac{61}{33}&\frac{94}{33}\end{matrix}\right)\left(\begin{matrix}1239\\810\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{33}\times 1239-\frac{1}{33}\times 810\\-\frac{61}{33}\times 1239+\frac{94}{33}\times 810\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}13\\17\end{matrix}\right)
Do the arithmetic.
m=13,b=17
Extract the matrix elements m and b.
94m+b=1239
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
61m+b=810
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
94m+b=1239,61m+b=810
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
94m-61m+b-b=1239-810
Subtract 61m+b=810 from 94m+b=1239 by subtracting like terms on each side of the equal sign.
94m-61m=1239-810
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
33m=1239-810
Add 94m to -61m.
33m=429
Add 1239 to -810.
m=13
Divide both sides by 33.
61\times 13+b=810
Substitute 13 for m in 61m+b=810. Because the resulting equation contains only one variable, you can solve for b directly.
793+b=810
Multiply 61 times 13.
b=17
Subtract 793 from both sides of the equation.
m=13,b=17
The system is now solved.