Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+9x+5+3
Combine -2x^{2} and x^{2} to get -x^{2}.
-x^{2}+9x+8
Add 5 and 3 to get 8.
factor(-x^{2}+9x+5+3)
Combine -2x^{2} and x^{2} to get -x^{2}.
factor(-x^{2}+9x+8)
Add 5 and 3 to get 8.
-x^{2}+9x+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\left(-1\right)\times 8}}{2\left(-1\right)}
Square 9.
x=\frac{-9±\sqrt{81+4\times 8}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-9±\sqrt{81+32}}{2\left(-1\right)}
Multiply 4 times 8.
x=\frac{-9±\sqrt{113}}{2\left(-1\right)}
Add 81 to 32.
x=\frac{-9±\sqrt{113}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{113}-9}{-2}
Now solve the equation x=\frac{-9±\sqrt{113}}{-2} when ± is plus. Add -9 to \sqrt{113}.
x=\frac{9-\sqrt{113}}{2}
Divide -9+\sqrt{113} by -2.
x=\frac{-\sqrt{113}-9}{-2}
Now solve the equation x=\frac{-9±\sqrt{113}}{-2} when ± is minus. Subtract \sqrt{113} from -9.
x=\frac{\sqrt{113}+9}{2}
Divide -9-\sqrt{113} by -2.
-x^{2}+9x+8=-\left(x-\frac{9-\sqrt{113}}{2}\right)\left(x-\frac{\sqrt{113}+9}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9-\sqrt{113}}{2} for x_{1} and \frac{9+\sqrt{113}}{2} for x_{2}.