Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-2x=3,x^{2}+y^{2}=18
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-2x=3
Solve y-2x=3 for y by isolating y on the left hand side of the equal sign.
y=2x+3
Subtract -2x from both sides of the equation.
x^{2}+\left(2x+3\right)^{2}=18
Substitute 2x+3 for y in the other equation, x^{2}+y^{2}=18.
x^{2}+4x^{2}+12x+9=18
Square 2x+3.
5x^{2}+12x+9=18
Add x^{2} to 4x^{2}.
5x^{2}+12x-9=0
Subtract 18 from both sides of the equation.
x=\frac{-12±\sqrt{12^{2}-4\times 5\left(-9\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 2^{2} for a, 1\times 3\times 2\times 2 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 5\left(-9\right)}}{2\times 5}
Square 1\times 3\times 2\times 2.
x=\frac{-12±\sqrt{144-20\left(-9\right)}}{2\times 5}
Multiply -4 times 1+1\times 2^{2}.
x=\frac{-12±\sqrt{144+180}}{2\times 5}
Multiply -20 times -9.
x=\frac{-12±\sqrt{324}}{2\times 5}
Add 144 to 180.
x=\frac{-12±18}{2\times 5}
Take the square root of 324.
x=\frac{-12±18}{10}
Multiply 2 times 1+1\times 2^{2}.
x=\frac{6}{10}
Now solve the equation x=\frac{-12±18}{10} when ± is plus. Add -12 to 18.
x=\frac{3}{5}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
x=-\frac{30}{10}
Now solve the equation x=\frac{-12±18}{10} when ± is minus. Subtract 18 from -12.
x=-3
Divide -30 by 10.
y=2\times \frac{3}{5}+3
There are two solutions for x: \frac{3}{5} and -3. Substitute \frac{3}{5} for x in the equation y=2x+3 to find the corresponding solution for y that satisfies both equations.
y=\frac{6}{5}+3
Multiply 2 times \frac{3}{5}.
y=\frac{21}{5}
Add \frac{3}{5}\times 2 to 3.
y=2\left(-3\right)+3
Now substitute -3 for x in the equation y=2x+3 and solve to find the corresponding solution for y that satisfies both equations.
y=-6+3
Multiply 2 times -3.
y=-3
Add -3\times 2 to 3.
y=\frac{21}{5},x=\frac{3}{5}\text{ or }y=-3,x=-3
The system is now solved.