Solve for y, x
x = \frac{75}{2} = 37\frac{1}{2} = 37.5
y = \frac{675}{2} = 337\frac{1}{2} = 337.5
Graph
Share
Copied to clipboard
y-5x=150
Consider the first equation. Subtract 5x from both sides.
y-x=300
Consider the second equation. Subtract x from both sides.
y-5x=150,y-x=300
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-5x=150
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=5x+150
Add 5x to both sides of the equation.
5x+150-x=300
Substitute 150+5x for y in the other equation, y-x=300.
4x+150=300
Add 5x to -x.
4x=150
Subtract 150 from both sides of the equation.
x=\frac{75}{2}
Divide both sides by 4.
y=5\times \frac{75}{2}+150
Substitute \frac{75}{2} for x in y=5x+150. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{375}{2}+150
Multiply 5 times \frac{75}{2}.
y=\frac{675}{2}
Add 150 to \frac{375}{2}.
y=\frac{675}{2},x=\frac{75}{2}
The system is now solved.
y-5x=150
Consider the first equation. Subtract 5x from both sides.
y-x=300
Consider the second equation. Subtract x from both sides.
y-5x=150,y-x=300
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-5\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}150\\300\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-5\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-5\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&-1\end{matrix}\right))\left(\begin{matrix}150\\300\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-5\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&-1\end{matrix}\right))\left(\begin{matrix}150\\300\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&-1\end{matrix}\right))\left(\begin{matrix}150\\300\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-5\right)}&-\frac{-5}{-1-\left(-5\right)}\\-\frac{1}{-1-\left(-5\right)}&\frac{1}{-1-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}150\\300\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{5}{4}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}150\\300\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 150+\frac{5}{4}\times 300\\-\frac{1}{4}\times 150+\frac{1}{4}\times 300\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{675}{2}\\\frac{75}{2}\end{matrix}\right)
Do the arithmetic.
y=\frac{675}{2},x=\frac{75}{2}
Extract the matrix elements y and x.
y-5x=150
Consider the first equation. Subtract 5x from both sides.
y-x=300
Consider the second equation. Subtract x from both sides.
y-5x=150,y-x=300
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
y-y-5x+x=150-300
Subtract y-x=300 from y-5x=150 by subtracting like terms on each side of the equal sign.
-5x+x=150-300
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
-4x=150-300
Add -5x to x.
-4x=-150
Add 150 to -300.
x=\frac{75}{2}
Divide both sides by -4.
y-\frac{75}{2}=300
Substitute \frac{75}{2} for x in y-x=300. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{675}{2}
Add \frac{75}{2} to both sides of the equation.
y=\frac{675}{2},x=\frac{75}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}