Solve for y, t, b
y=320000
t = \frac{400}{3} = 133\frac{1}{3} \approx 133.333333333
b = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
Share
Copied to clipboard
y=200\times 8\times 200
Consider the first equation. Multiply 40 and 5 to get 200.
y=1600\times 200
Multiply 200 and 8 to get 1600.
y=320000
Multiply 1600 and 200 to get 320000.
t=200\times \frac{8}{12}
Consider the second equation. Multiply 40 and 5 to get 200.
t=200\times \frac{2}{3}
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
t=\frac{400}{3}
Multiply 200 and \frac{2}{3} to get \frac{400}{3}.
b=\frac{\frac{400}{3}}{40}
Consider the third equation. Insert the known values of variables into the equation.
b=\frac{400}{3\times 40}
Express \frac{\frac{400}{3}}{40} as a single fraction.
b=\frac{400}{120}
Multiply 3 and 40 to get 120.
b=\frac{10}{3}
Reduce the fraction \frac{400}{120} to lowest terms by extracting and canceling out 40.
y=320000 t=\frac{400}{3} b=\frac{10}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}