Solve for y, x
x=\frac{1}{2}=0.5
y=150
Graph
Share
Copied to clipboard
y+300x=300
Consider the first equation. Add 300x to both sides.
y+100x=200
Consider the second equation. Add 100x to both sides.
y+300x=300,y+100x=200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+300x=300
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=-300x+300
Subtract 300x from both sides of the equation.
-300x+300+100x=200
Substitute -300x+300 for y in the other equation, y+100x=200.
-200x+300=200
Add -300x to 100x.
-200x=-100
Subtract 300 from both sides of the equation.
x=\frac{1}{2}
Divide both sides by -200.
y=-300\times \frac{1}{2}+300
Substitute \frac{1}{2} for x in y=-300x+300. Because the resulting equation contains only one variable, you can solve for y directly.
y=-150+300
Multiply -300 times \frac{1}{2}.
y=150
Add 300 to -150.
y=150,x=\frac{1}{2}
The system is now solved.
y+300x=300
Consider the first equation. Add 300x to both sides.
y+100x=200
Consider the second equation. Add 100x to both sides.
y+300x=300,y+100x=200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&300\\1&100\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}300\\200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&300\\1&100\end{matrix}\right))\left(\begin{matrix}1&300\\1&100\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&300\\1&100\end{matrix}\right))\left(\begin{matrix}300\\200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&300\\1&100\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&300\\1&100\end{matrix}\right))\left(\begin{matrix}300\\200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&300\\1&100\end{matrix}\right))\left(\begin{matrix}300\\200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{100}{100-300}&-\frac{300}{100-300}\\-\frac{1}{100-300}&\frac{1}{100-300}\end{matrix}\right)\left(\begin{matrix}300\\200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{3}{2}\\\frac{1}{200}&-\frac{1}{200}\end{matrix}\right)\left(\begin{matrix}300\\200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 300+\frac{3}{2}\times 200\\\frac{1}{200}\times 300-\frac{1}{200}\times 200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}150\\\frac{1}{2}\end{matrix}\right)
Do the arithmetic.
y=150,x=\frac{1}{2}
Extract the matrix elements y and x.
y+300x=300
Consider the first equation. Add 300x to both sides.
y+100x=200
Consider the second equation. Add 100x to both sides.
y+300x=300,y+100x=200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
y-y+300x-100x=300-200
Subtract y+100x=200 from y+300x=300 by subtracting like terms on each side of the equal sign.
300x-100x=300-200
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
200x=300-200
Add 300x to -100x.
200x=100
Add 300 to -200.
x=\frac{1}{2}
Divide both sides by 200.
y+100\times \frac{1}{2}=200
Substitute \frac{1}{2} for x in y+100x=200. Because the resulting equation contains only one variable, you can solve for y directly.
y+50=200
Multiply 100 times \frac{1}{2}.
y=150
Subtract 50 from both sides of the equation.
y=150,x=\frac{1}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}