Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=1-0.2\times \frac{10.6}{13}-0.8\times \left(\frac{10.6}{13}\right)^{2}
Consider the first equation. Insert the known values of variables into the equation.
y=1-0.2\times \frac{106}{130}-0.8\times \left(\frac{10.6}{13}\right)^{2}
Expand \frac{10.6}{13} by multiplying both numerator and the denominator by 10.
y=1-0.2\times \frac{53}{65}-0.8\times \left(\frac{10.6}{13}\right)^{2}
Reduce the fraction \frac{106}{130} to lowest terms by extracting and canceling out 2.
y=1-\frac{53}{325}-0.8\times \left(\frac{10.6}{13}\right)^{2}
Multiply 0.2 and \frac{53}{65} to get \frac{53}{325}.
y=\frac{272}{325}-0.8\times \left(\frac{10.6}{13}\right)^{2}
Subtract \frac{53}{325} from 1 to get \frac{272}{325}.
y=\frac{272}{325}-0.8\times \left(\frac{106}{130}\right)^{2}
Expand \frac{10.6}{13} by multiplying both numerator and the denominator by 10.
y=\frac{272}{325}-0.8\times \left(\frac{53}{65}\right)^{2}
Reduce the fraction \frac{106}{130} to lowest terms by extracting and canceling out 2.
y=\frac{272}{325}-0.8\times \frac{2809}{4225}
Calculate \frac{53}{65} to the power of 2 and get \frac{2809}{4225}.
y=\frac{272}{325}-\frac{11236}{21125}
Multiply 0.8 and \frac{2809}{4225} to get \frac{11236}{21125}.
y=\frac{6444}{21125}
Subtract \frac{11236}{21125} from \frac{272}{325} to get \frac{6444}{21125}.
y=\frac{6444}{21125} x=10.6
The system is now solved.