Solve for y, x
x=10.6
y=\frac{6444}{21125}\approx 0.30504142
Graph
Share
Copied to clipboard
y=1-0.2\times \frac{10.6}{13}-0.8\times \left(\frac{10.6}{13}\right)^{2}
Consider the first equation. Insert the known values of variables into the equation.
y=1-0.2\times \frac{106}{130}-0.8\times \left(\frac{10.6}{13}\right)^{2}
Expand \frac{10.6}{13} by multiplying both numerator and the denominator by 10.
y=1-0.2\times \frac{53}{65}-0.8\times \left(\frac{10.6}{13}\right)^{2}
Reduce the fraction \frac{106}{130} to lowest terms by extracting and canceling out 2.
y=1-\frac{53}{325}-0.8\times \left(\frac{10.6}{13}\right)^{2}
Multiply 0.2 and \frac{53}{65} to get \frac{53}{325}.
y=\frac{272}{325}-0.8\times \left(\frac{10.6}{13}\right)^{2}
Subtract \frac{53}{325} from 1 to get \frac{272}{325}.
y=\frac{272}{325}-0.8\times \left(\frac{106}{130}\right)^{2}
Expand \frac{10.6}{13} by multiplying both numerator and the denominator by 10.
y=\frac{272}{325}-0.8\times \left(\frac{53}{65}\right)^{2}
Reduce the fraction \frac{106}{130} to lowest terms by extracting and canceling out 2.
y=\frac{272}{325}-0.8\times \frac{2809}{4225}
Calculate \frac{53}{65} to the power of 2 and get \frac{2809}{4225}.
y=\frac{272}{325}-\frac{11236}{21125}
Multiply 0.8 and \frac{2809}{4225} to get \frac{11236}{21125}.
y=\frac{6444}{21125}
Subtract \frac{11236}{21125} from \frac{272}{325} to get \frac{6444}{21125}.
y=\frac{6444}{21125} x=10.6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}