Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y\times 2k=\left(-\frac{1}{2k}\right)x\times 2k
Consider the first equation. Multiply both sides of the equation by 2k.
y\times 2k=\frac{-x}{2k}\times 2k
Express \left(-\frac{1}{2k}\right)x as a single fraction.
y\times 2k=\frac{-x\times 2}{2k}k
Express \frac{-x}{2k}\times 2 as a single fraction.
y\times 2k=\frac{-x}{k}k
Cancel out 2 in both numerator and denominator.
y\times 2k=\frac{-xk}{k}
Express \frac{-x}{k}k as a single fraction.
y\times 2k=-x
Cancel out k in both numerator and denominator.
y\times 2k+x=0
Add x to both sides.
2ky+x=0,x^{2}+2y^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2ky+x=0
Solve 2ky+x=0 for y by isolating y on the left hand side of the equal sign.
2ky=-x
Subtract x from both sides of the equation.
y=\left(-\frac{1}{2k}\right)x
Divide both sides by 2k.
x^{2}+2\left(\left(-\frac{1}{2k}\right)x\right)^{2}=4
Substitute \left(-\frac{1}{2k}\right)x for y in the other equation, x^{2}+2y^{2}=4.
x^{2}+2\left(-\frac{1}{2k}\right)^{2}x^{2}=4
Square \left(-\frac{1}{2k}\right)x.
\left(1+2\left(-\frac{1}{2k}\right)^{2}\right)x^{2}=4
Add x^{2} to 2\left(-\frac{1}{2k}\right)^{2}x^{2}.
\left(1+2\left(-\frac{1}{2k}\right)^{2}\right)x^{2}-4=0
Subtract 4 from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\left(1+2\left(-\frac{1}{2k}\right)^{2}\right)\left(-4\right)}}{2\left(1+2\left(-\frac{1}{2k}\right)^{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+2\left(-\frac{1}{2k}\right)^{2} for a, 2\times 0\times 2\left(-\frac{1}{2k}\right) for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(1+2\left(-\frac{1}{2k}\right)^{2}\right)\left(-4\right)}}{2\left(1+2\left(-\frac{1}{2k}\right)^{2}\right)}
Square 2\times 0\times 2\left(-\frac{1}{2k}\right).
x=\frac{0±\sqrt{\left(-4-\frac{2}{k^{2}}\right)\left(-4\right)}}{2\left(1+2\left(-\frac{1}{2k}\right)^{2}\right)}
Multiply -4 times 1+2\left(-\frac{1}{2k}\right)^{2}.
x=\frac{0±\sqrt{16+\frac{8}{k^{2}}}}{2\left(1+2\left(-\frac{1}{2k}\right)^{2}\right)}
Multiply -4-\frac{2}{k^{2}} times -4.
x=\frac{0±\frac{2\sqrt{4k^{2}+2}}{|k|}}{2\left(1+2\left(-\frac{1}{2k}\right)^{2}\right)}
Take the square root of 16+\frac{8}{k^{2}}.
x=\frac{0±\frac{2\sqrt{4k^{2}+2}}{|k|}}{2+\frac{1}{k^{2}}}
Multiply 2 times 1+2\left(-\frac{1}{2k}\right)^{2}.
x=\frac{4k^{2}}{|k|\sqrt{4k^{2}+2}}
Now solve the equation x=\frac{0±\frac{2\sqrt{4k^{2}+2}}{|k|}}{2+\frac{1}{k^{2}}} when ± is plus.
x=-\frac{4k^{2}}{|k|\sqrt{4k^{2}+2}}
Now solve the equation x=\frac{0±\frac{2\sqrt{4k^{2}+2}}{|k|}}{2+\frac{1}{k^{2}}} when ± is minus.
y=\left(-\frac{1}{2k}\right)\times \frac{4k^{2}}{|k|\sqrt{4k^{2}+2}}
There are two solutions for x: \frac{4k^{2}}{\sqrt{4k^{2}+2}|k|} and -\frac{4k^{2}}{\sqrt{4k^{2}+2}|k|}. Substitute \frac{4k^{2}}{\sqrt{4k^{2}+2}|k|} for x in the equation y=\left(-\frac{1}{2k}\right)x to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{1}{2k}\right)\left(-\frac{4k^{2}}{|k|\sqrt{4k^{2}+2}}\right)
Now substitute -\frac{4k^{2}}{\sqrt{4k^{2}+2}|k|} for x in the equation y=\left(-\frac{1}{2k}\right)x and solve to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{1}{2k}\right)\times \frac{4k^{2}}{|k|\sqrt{4k^{2}+2}},x=\frac{4k^{2}}{|k|\sqrt{4k^{2}+2}}\text{ or }y=\left(-\frac{1}{2k}\right)\left(-\frac{4k^{2}}{|k|\sqrt{4k^{2}+2}}\right),x=-\frac{4k^{2}}{|k|\sqrt{4k^{2}+2}}
The system is now solved.