Solve for y, x
x=\frac{3\sqrt{2}-\sqrt{6}}{4}\approx 0.448287736\text{, }y=\frac{-\sqrt{2}-\sqrt{6}}{4}\approx -0.965925826
x=\frac{\sqrt{6}+3\sqrt{2}}{4}\approx 1.673032607\text{, }y=\frac{\sqrt{6}-\sqrt{2}}{4}\approx 0.258819045
Graph
Share
Copied to clipboard
y-x=-\sqrt{2}
Consider the first equation. Subtract x from both sides.
y-x=-\sqrt{2},x^{2}+3y^{2}=3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=-\sqrt{2}
Solve y-x=-\sqrt{2} for y by isolating y on the left hand side of the equal sign.
y=x-\sqrt{2}
Subtract -x from both sides of the equation.
x^{2}+3\left(x-\sqrt{2}\right)^{2}=3
Substitute x-\sqrt{2} for y in the other equation, x^{2}+3y^{2}=3.
x^{2}+3\left(x^{2}+2\left(-\sqrt{2}\right)x+\left(-\sqrt{2}\right)^{2}\right)=3
Square x-\sqrt{2}.
x^{2}+3x^{2}+6\left(-\sqrt{2}\right)x+3\left(-\sqrt{2}\right)^{2}=3
Multiply 3 times x^{2}+2\left(-\sqrt{2}\right)x+\left(-\sqrt{2}\right)^{2}.
4x^{2}+6\left(-\sqrt{2}\right)x+3\left(-\sqrt{2}\right)^{2}=3
Add x^{2} to 3x^{2}.
4x^{2}+6\left(-\sqrt{2}\right)x+3\left(-\sqrt{2}\right)^{2}-3=0
Subtract 3 from both sides of the equation.
x=\frac{-6\left(-\sqrt{2}\right)±\sqrt{\left(6\left(-\sqrt{2}\right)\right)^{2}-4\times 4\times 3}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+3\times 1^{2} for a, 3\times 1\times 2\left(-\sqrt{2}\right) for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6\left(-\sqrt{2}\right)±\sqrt{72-4\times 4\times 3}}{2\times 4}
Square 3\times 1\times 2\left(-\sqrt{2}\right).
x=\frac{-6\left(-\sqrt{2}\right)±\sqrt{72-16\times 3}}{2\times 4}
Multiply -4 times 1+3\times 1^{2}.
x=\frac{-6\left(-\sqrt{2}\right)±\sqrt{72-48}}{2\times 4}
Multiply -16 times 3.
x=\frac{-6\left(-\sqrt{2}\right)±\sqrt{24}}{2\times 4}
Add 72 to -48.
x=\frac{-6\left(-\sqrt{2}\right)±2\sqrt{6}}{2\times 4}
Take the square root of 24.
x=\frac{6\sqrt{2}±2\sqrt{6}}{2\times 4}
The opposite of 3\times 1\times 2\left(-\sqrt{2}\right) is 6\sqrt{2}.
x=\frac{6\sqrt{2}±2\sqrt{6}}{8}
Multiply 2 times 1+3\times 1^{2}.
x=\frac{2\sqrt{6}+6\sqrt{2}}{8}
Now solve the equation x=\frac{6\sqrt{2}±2\sqrt{6}}{8} when ± is plus. Add 6\sqrt{2} to 2\sqrt{6}.
x=\frac{\sqrt{6}+3\sqrt{2}}{4}
Divide 6\sqrt{2}+2\sqrt{6} by 8.
x=\frac{6\sqrt{2}-2\sqrt{6}}{8}
Now solve the equation x=\frac{6\sqrt{2}±2\sqrt{6}}{8} when ± is minus. Subtract 2\sqrt{6} from 6\sqrt{2}.
x=\frac{3\sqrt{2}-\sqrt{6}}{4}
Divide 6\sqrt{2}-2\sqrt{6} by 8.
y=\frac{\sqrt{6}+3\sqrt{2}}{4}-\sqrt{2}
There are two solutions for x: \frac{3\sqrt{2}+\sqrt{6}}{4} and \frac{3\sqrt{2}-\sqrt{6}}{4}. Substitute \frac{3\sqrt{2}+\sqrt{6}}{4} for x in the equation y=x-\sqrt{2} to find the corresponding solution for y that satisfies both equations.
y=\frac{3\sqrt{2}-\sqrt{6}}{4}-\sqrt{2}
Now substitute \frac{3\sqrt{2}-\sqrt{6}}{4} for x in the equation y=x-\sqrt{2} and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{6}+3\sqrt{2}}{4}-\sqrt{2},x=\frac{\sqrt{6}+3\sqrt{2}}{4}\text{ or }y=\frac{3\sqrt{2}-\sqrt{6}}{4}-\sqrt{2},x=\frac{3\sqrt{2}-\sqrt{6}}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}