Solve for y, x
x=\frac{7}{5}=1.4\text{, }y=\frac{1}{5}=0.2
x=1\text{, }y=1
Graph
Share
Copied to clipboard
y+2x=3,x^{2}+y^{2}=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+2x=3
Solve y+2x=3 for y by isolating y on the left hand side of the equal sign.
y=-2x+3
Subtract 2x from both sides of the equation.
x^{2}+\left(-2x+3\right)^{2}=2
Substitute -2x+3 for y in the other equation, x^{2}+y^{2}=2.
x^{2}+4x^{2}-12x+9=2
Square -2x+3.
5x^{2}-12x+9=2
Add x^{2} to 4x^{2}.
5x^{2}-12x+7=0
Subtract 2 from both sides of the equation.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\times 7}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-2\right)^{2} for a, 1\times 3\left(-2\right)\times 2 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 5\times 7}}{2\times 5}
Square 1\times 3\left(-2\right)\times 2.
x=\frac{-\left(-12\right)±\sqrt{144-20\times 7}}{2\times 5}
Multiply -4 times 1+1\left(-2\right)^{2}.
x=\frac{-\left(-12\right)±\sqrt{144-140}}{2\times 5}
Multiply -20 times 7.
x=\frac{-\left(-12\right)±\sqrt{4}}{2\times 5}
Add 144 to -140.
x=\frac{-\left(-12\right)±2}{2\times 5}
Take the square root of 4.
x=\frac{12±2}{2\times 5}
The opposite of 1\times 3\left(-2\right)\times 2 is 12.
x=\frac{12±2}{10}
Multiply 2 times 1+1\left(-2\right)^{2}.
x=\frac{14}{10}
Now solve the equation x=\frac{12±2}{10} when ± is plus. Add 12 to 2.
x=\frac{7}{5}
Reduce the fraction \frac{14}{10} to lowest terms by extracting and canceling out 2.
x=\frac{10}{10}
Now solve the equation x=\frac{12±2}{10} when ± is minus. Subtract 2 from 12.
x=1
Divide 10 by 10.
y=-2\times \frac{7}{5}+3
There are two solutions for x: \frac{7}{5} and 1. Substitute \frac{7}{5} for x in the equation y=-2x+3 to find the corresponding solution for y that satisfies both equations.
y=-\frac{14}{5}+3
Multiply -2 times \frac{7}{5}.
y=\frac{1}{5}
Add -2\times \frac{7}{5} to 3.
y=-2+3
Now substitute 1 for x in the equation y=-2x+3 and solve to find the corresponding solution for y that satisfies both equations.
y=1
Add -2 to 3.
y=\frac{1}{5},x=\frac{7}{5}\text{ or }y=1,x=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}