Solve for x_1, x_2, x_3
x_{1} = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
x_{2} = \frac{5}{4} = 1\frac{1}{4} = 1.25
x_{3}=-\frac{5}{12}\approx -0.416666667
Share
Copied to clipboard
-\left(2x_{2}-2x_{3}\right)+\frac{5}{2}x_{2}-\frac{1}{2}x_{3}=0 -\left(2x_{2}-2x_{3}\right)-\frac{1}{2}x_{2}+\frac{5}{2}x_{3}=-5
Substitute 2x_{2}-2x_{3} for x_{1} in the second and third equation.
x_{2}=-3x_{3} x_{3}=-\frac{10}{9}+\frac{5}{9}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=-\frac{10}{9}+\frac{5}{9}\left(-3\right)x_{3}
Substitute -3x_{3} for x_{2} in the equation x_{3}=-\frac{10}{9}+\frac{5}{9}x_{2}.
x_{3}=-\frac{5}{12}
Solve x_{3}=-\frac{10}{9}+\frac{5}{9}\left(-3\right)x_{3} for x_{3}.
x_{2}=-3\left(-\frac{5}{12}\right)
Substitute -\frac{5}{12} for x_{3} in the equation x_{2}=-3x_{3}.
x_{2}=\frac{5}{4}
Calculate x_{2} from x_{2}=-3\left(-\frac{5}{12}\right).
x_{1}=2\times \frac{5}{4}-2\left(-\frac{5}{12}\right)
Substitute \frac{5}{4} for x_{2} and -\frac{5}{12} for x_{3} in the equation x_{1}=2x_{2}-2x_{3}.
x_{1}=\frac{10}{3}
Calculate x_{1} from x_{1}=2\times \frac{5}{4}-2\left(-\frac{5}{12}\right).
x_{1}=\frac{10}{3} x_{2}=\frac{5}{4} x_{3}=-\frac{5}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}