Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

-\left(2x_{2}-2x_{3}\right)+\frac{5}{2}x_{2}-\frac{1}{2}x_{3}=0 -\left(2x_{2}-2x_{3}\right)-\frac{1}{2}x_{2}+\frac{5}{2}x_{3}=-5
Substitute 2x_{2}-2x_{3} for x_{1} in the second and third equation.
x_{2}=-3x_{3} x_{3}=-\frac{10}{9}+\frac{5}{9}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=-\frac{10}{9}+\frac{5}{9}\left(-3\right)x_{3}
Substitute -3x_{3} for x_{2} in the equation x_{3}=-\frac{10}{9}+\frac{5}{9}x_{2}.
x_{3}=-\frac{5}{12}
Solve x_{3}=-\frac{10}{9}+\frac{5}{9}\left(-3\right)x_{3} for x_{3}.
x_{2}=-3\left(-\frac{5}{12}\right)
Substitute -\frac{5}{12} for x_{3} in the equation x_{2}=-3x_{3}.
x_{2}=\frac{5}{4}
Calculate x_{2} from x_{2}=-3\left(-\frac{5}{12}\right).
x_{1}=2\times \frac{5}{4}-2\left(-\frac{5}{12}\right)
Substitute \frac{5}{4} for x_{2} and -\frac{5}{12} for x_{3} in the equation x_{1}=2x_{2}-2x_{3}.
x_{1}=\frac{10}{3}
Calculate x_{1} from x_{1}=2\times \frac{5}{4}-2\left(-\frac{5}{12}\right).
x_{1}=\frac{10}{3} x_{2}=\frac{5}{4} x_{3}=-\frac{5}{12}
The system is now solved.