Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{3}=x_{1}+x_{2}
Solve x_{1}+x_{2}=x_{3} for x_{3}.
x_{1}+24\left(x_{1}+x_{2}\right)=130
Substitute x_{1}+x_{2} for x_{3} in the equation x_{1}+24x_{3}=130.
x_{2}=\frac{5}{3}x_{1}-\frac{65}{3} x_{1}=\frac{26}{5}-\frac{24}{25}x_{2}
Solve the second equation for x_{2} and the third equation for x_{1}.
x_{1}=\frac{26}{5}-\frac{24}{25}\left(\frac{5}{3}x_{1}-\frac{65}{3}\right)
Substitute \frac{5}{3}x_{1}-\frac{65}{3} for x_{2} in the equation x_{1}=\frac{26}{5}-\frac{24}{25}x_{2}.
x_{1}=10
Solve x_{1}=\frac{26}{5}-\frac{24}{25}\left(\frac{5}{3}x_{1}-\frac{65}{3}\right) for x_{1}.
x_{2}=\frac{5}{3}\times 10-\frac{65}{3}
Substitute 10 for x_{1} in the equation x_{2}=\frac{5}{3}x_{1}-\frac{65}{3}.
x_{2}=-5
Calculate x_{2} from x_{2}=\frac{5}{3}\times 10-\frac{65}{3}.
x_{3}=10-5
Substitute -5 for x_{2} and 10 for x_{1} in the equation x_{3}=x_{1}+x_{2}.
x_{3}=5
Calculate x_{3} from x_{3}=10-5.
x_{1}=10 x_{2}=-5 x_{3}=5
The system is now solved.