Solve for x_1, x_2, x_3
x_{1} = \frac{37}{10} = 3\frac{7}{10} = 3.7
x_{2}=\frac{1}{2}=0.5
x_{3} = \frac{19}{10} = 1\frac{9}{10} = 1.9
Share
Copied to clipboard
x_{1}=-x_{2}-2x_{3}+8
Solve x_{1}+x_{2}+2x_{3}=8 for x_{1}.
-x_{2}-2x_{3}+8+2x_{2}-3x_{3}=-1 3\left(-x_{2}-2x_{3}+8\right)-7x_{2}=4x_{3}
Substitute -x_{2}-2x_{3}+8 for x_{1} in the second and third equation.
x_{2}=5x_{3}-9 x_{3}=\frac{12}{5}-x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{12}{5}-\left(5x_{3}-9\right)
Substitute 5x_{3}-9 for x_{2} in the equation x_{3}=\frac{12}{5}-x_{2}.
x_{3}=\frac{19}{10}
Solve x_{3}=\frac{12}{5}-\left(5x_{3}-9\right) for x_{3}.
x_{2}=5\times \frac{19}{10}-9
Substitute \frac{19}{10} for x_{3} in the equation x_{2}=5x_{3}-9.
x_{2}=\frac{1}{2}
Calculate x_{2} from x_{2}=5\times \frac{19}{10}-9.
x_{1}=-\frac{1}{2}-2\times \frac{19}{10}+8
Substitute \frac{1}{2} for x_{2} and \frac{19}{10} for x_{3} in the equation x_{1}=-x_{2}-2x_{3}+8.
x_{1}=\frac{37}{10}
Calculate x_{1} from x_{1}=-\frac{1}{2}-2\times \frac{19}{10}+8.
x_{1}=\frac{37}{10} x_{2}=\frac{1}{2} x_{3}=\frac{19}{10}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}