Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=-x_{2}-2x_{3}+8
Solve x_{1}+x_{2}+2x_{3}=8 for x_{1}.
-x_{2}-2x_{3}+8+2x_{2}-3x_{3}=-1 3\left(-x_{2}-2x_{3}+8\right)-7x_{2}=4x_{3}
Substitute -x_{2}-2x_{3}+8 for x_{1} in the second and third equation.
x_{2}=5x_{3}-9 x_{3}=\frac{12}{5}-x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{12}{5}-\left(5x_{3}-9\right)
Substitute 5x_{3}-9 for x_{2} in the equation x_{3}=\frac{12}{5}-x_{2}.
x_{3}=\frac{19}{10}
Solve x_{3}=\frac{12}{5}-\left(5x_{3}-9\right) for x_{3}.
x_{2}=5\times \frac{19}{10}-9
Substitute \frac{19}{10} for x_{3} in the equation x_{2}=5x_{3}-9.
x_{2}=\frac{1}{2}
Calculate x_{2} from x_{2}=5\times \frac{19}{10}-9.
x_{1}=-\frac{1}{2}-2\times \frac{19}{10}+8
Substitute \frac{1}{2} for x_{2} and \frac{19}{10} for x_{3} in the equation x_{1}=-x_{2}-2x_{3}+8.
x_{1}=\frac{37}{10}
Calculate x_{1} from x_{1}=-\frac{1}{2}-2\times \frac{19}{10}+8.
x_{1}=\frac{37}{10} x_{2}=\frac{1}{2} x_{3}=\frac{19}{10}
The system is now solved.