Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y=4,x+y=102
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=4
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+4
Add y to both sides of the equation.
y+4+y=102
Substitute y+4 for x in the other equation, x+y=102.
2y+4=102
Add y to y.
2y=98
Subtract 4 from both sides of the equation.
y=49
Divide both sides by 2.
x=49+4
Substitute 49 for y in x=y+4. Because the resulting equation contains only one variable, you can solve for x directly.
x=53
Add 4 to 49.
x=53,y=49
The system is now solved.
x-y=4,x+y=102
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\102\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\102\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\102\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\102\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}4\\102\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\102\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4+\frac{1}{2}\times 102\\-\frac{1}{2}\times 4+\frac{1}{2}\times 102\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}53\\49\end{matrix}\right)
Do the arithmetic.
x=53,y=49
Extract the matrix elements x and y.
x-y=4,x+y=102
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x-y-y=4-102
Subtract x+y=102 from x-y=4 by subtracting like terms on each side of the equal sign.
-y-y=4-102
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-2y=4-102
Add -y to -y.
-2y=-98
Add 4 to -102.
y=49
Divide both sides by -2.
x+49=102
Substitute 49 for y in x+y=102. Because the resulting equation contains only one variable, you can solve for x directly.
x=53
Subtract 49 from both sides of the equation.
x=53,y=49
The system is now solved.