Solve for x, y
y = \frac{369}{256} = 1\frac{113}{256} = 1.44140625
Graph
Share
Copied to clipboard
4x=-1
Consider the first equation. Subtract 1 from both sides. Anything subtracted from zero gives its negation.
x=-\frac{1}{4}
Divide both sides by 4.
y=\left(-\frac{1}{4}\right)^{4}+4\left(-\frac{1}{4}\right)^{3}-6\left(-\frac{1}{4}\right)
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{1}{256}+4\left(-\frac{1}{4}\right)^{3}-6\left(-\frac{1}{4}\right)
Calculate -\frac{1}{4} to the power of 4 and get \frac{1}{256}.
y=\frac{1}{256}+4\left(-\frac{1}{64}\right)-6\left(-\frac{1}{4}\right)
Calculate -\frac{1}{4} to the power of 3 and get -\frac{1}{64}.
y=\frac{1}{256}-\frac{1}{16}-6\left(-\frac{1}{4}\right)
Multiply 4 and -\frac{1}{64} to get -\frac{1}{16}.
y=-\frac{15}{256}-6\left(-\frac{1}{4}\right)
Subtract \frac{1}{16} from \frac{1}{256} to get -\frac{15}{256}.
y=-\frac{15}{256}+\frac{3}{2}
Multiply -6 and -\frac{1}{4} to get \frac{3}{2}.
y=\frac{369}{256}
Add -\frac{15}{256} and \frac{3}{2} to get \frac{369}{256}.
x=-\frac{1}{4} y=\frac{369}{256}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}