Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x=2
Consider the first equation. Add 2 to both sides. Anything plus zero gives itself.
x=\frac{2}{8}
Divide both sides by 8.
x=\frac{1}{4}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
y=\left(\frac{1}{4}\right)^{4}+2\times \left(\frac{1}{4}\right)^{3}+5\times \left(\frac{1}{4}\right)^{2}
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{1}{256}+2\times \left(\frac{1}{4}\right)^{3}+5\times \left(\frac{1}{4}\right)^{2}
Calculate \frac{1}{4} to the power of 4 and get \frac{1}{256}.
y=\frac{1}{256}+2\times \frac{1}{64}+5\times \left(\frac{1}{4}\right)^{2}
Calculate \frac{1}{4} to the power of 3 and get \frac{1}{64}.
y=\frac{1}{256}+\frac{1}{32}+5\times \left(\frac{1}{4}\right)^{2}
Multiply 2 and \frac{1}{64} to get \frac{1}{32}.
y=\frac{9}{256}+5\times \left(\frac{1}{4}\right)^{2}
Add \frac{1}{256} and \frac{1}{32} to get \frac{9}{256}.
y=\frac{9}{256}+5\times \frac{1}{16}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
y=\frac{9}{256}+\frac{5}{16}
Multiply 5 and \frac{1}{16} to get \frac{5}{16}.
y=\frac{89}{256}
Add \frac{9}{256} and \frac{5}{16} to get \frac{89}{256}.
x=\frac{1}{4} y=\frac{89}{256}
The system is now solved.