Solve for x, y
y=\frac{89}{256}=0.34765625
Graph
Share
Copied to clipboard
8x=2
Consider the first equation. Add 2 to both sides. Anything plus zero gives itself.
x=\frac{2}{8}
Divide both sides by 8.
x=\frac{1}{4}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
y=\left(\frac{1}{4}\right)^{4}+2\times \left(\frac{1}{4}\right)^{3}+5\times \left(\frac{1}{4}\right)^{2}
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{1}{256}+2\times \left(\frac{1}{4}\right)^{3}+5\times \left(\frac{1}{4}\right)^{2}
Calculate \frac{1}{4} to the power of 4 and get \frac{1}{256}.
y=\frac{1}{256}+2\times \frac{1}{64}+5\times \left(\frac{1}{4}\right)^{2}
Calculate \frac{1}{4} to the power of 3 and get \frac{1}{64}.
y=\frac{1}{256}+\frac{1}{32}+5\times \left(\frac{1}{4}\right)^{2}
Multiply 2 and \frac{1}{64} to get \frac{1}{32}.
y=\frac{9}{256}+5\times \left(\frac{1}{4}\right)^{2}
Add \frac{1}{256} and \frac{1}{32} to get \frac{9}{256}.
y=\frac{9}{256}+5\times \frac{1}{16}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
y=\frac{9}{256}+\frac{5}{16}
Multiply 5 and \frac{1}{16} to get \frac{5}{16}.
y=\frac{89}{256}
Add \frac{9}{256} and \frac{5}{16} to get \frac{89}{256}.
x=\frac{1}{4} y=\frac{89}{256}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}