Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-60x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-60\right)±\sqrt{3600-4}}{2}
Square -60.
x=\frac{-\left(-60\right)±\sqrt{3596}}{2}
Add 3600 to -4.
x=\frac{-\left(-60\right)±2\sqrt{899}}{2}
Take the square root of 3596.
x=\frac{60±2\sqrt{899}}{2}
The opposite of -60 is 60.
x=\frac{2\sqrt{899}+60}{2}
Now solve the equation x=\frac{60±2\sqrt{899}}{2} when ± is plus. Add 60 to 2\sqrt{899}.
x=\sqrt{899}+30
Divide 60+2\sqrt{899} by 2.
x=\frac{60-2\sqrt{899}}{2}
Now solve the equation x=\frac{60±2\sqrt{899}}{2} when ± is minus. Subtract 2\sqrt{899} from 60.
x=30-\sqrt{899}
Divide 60-2\sqrt{899} by 2.
x^{2}-60x+1=\left(x-\left(\sqrt{899}+30\right)\right)\left(x-\left(30-\sqrt{899}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 30+\sqrt{899} for x_{1} and 30-\sqrt{899} for x_{2}.