Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y+3x=7
Consider the second equation. Add 3x to both sides.
y=-3x+7
Subtract 3x from both sides of the equation.
x^{2}-4\left(-3x+7\right)^{2}=9
Substitute -3x+7 for y in the other equation, x^{2}-4y^{2}=9.
x^{2}-4\left(9x^{2}-42x+49\right)=9
Square -3x+7.
x^{2}-36x^{2}+168x-196=9
Multiply -4 times 9x^{2}-42x+49.
-35x^{2}+168x-196=9
Add x^{2} to -36x^{2}.
-35x^{2}+168x-205=0
Subtract 9 from both sides of the equation.
x=\frac{-168±\sqrt{168^{2}-4\left(-35\right)\left(-205\right)}}{2\left(-35\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1-4\left(-3\right)^{2} for a, -4\times 7\left(-3\right)\times 2 for b, and -205 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-168±\sqrt{28224-4\left(-35\right)\left(-205\right)}}{2\left(-35\right)}
Square -4\times 7\left(-3\right)\times 2.
x=\frac{-168±\sqrt{28224+140\left(-205\right)}}{2\left(-35\right)}
Multiply -4 times 1-4\left(-3\right)^{2}.
x=\frac{-168±\sqrt{28224-28700}}{2\left(-35\right)}
Multiply 140 times -205.
x=\frac{-168±\sqrt{-476}}{2\left(-35\right)}
Add 28224 to -28700.
x=\frac{-168±2\sqrt{119}i}{2\left(-35\right)}
Take the square root of -476.
x=\frac{-168±2\sqrt{119}i}{-70}
Multiply 2 times 1-4\left(-3\right)^{2}.
x=\frac{-168+2\sqrt{119}i}{-70}
Now solve the equation x=\frac{-168±2\sqrt{119}i}{-70} when ± is plus. Add -168 to 2i\sqrt{119}.
x=-\frac{\sqrt{119}i}{35}+\frac{12}{5}
Divide -168+2i\sqrt{119} by -70.
x=\frac{-2\sqrt{119}i-168}{-70}
Now solve the equation x=\frac{-168±2\sqrt{119}i}{-70} when ± is minus. Subtract 2i\sqrt{119} from -168.
x=\frac{\sqrt{119}i}{35}+\frac{12}{5}
Divide -168-2i\sqrt{119} by -70.
y=-3\left(-\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7
There are two solutions for x: \frac{12}{5}-\frac{i\sqrt{119}}{35} and \frac{12}{5}+\frac{i\sqrt{119}}{35}. Substitute \frac{12}{5}-\frac{i\sqrt{119}}{35} for x in the equation y=-3x+7 to find the corresponding solution for y that satisfies both equations.
y=-3\left(\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7
Now substitute \frac{12}{5}+\frac{i\sqrt{119}}{35} for x in the equation y=-3x+7 and solve to find the corresponding solution for y that satisfies both equations.
y=-3\left(-\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7,x=-\frac{\sqrt{119}i}{35}+\frac{12}{5}\text{ or }y=-3\left(\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7,x=\frac{\sqrt{119}i}{35}+\frac{12}{5}
The system is now solved.