Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2y-x=1
Consider the second equation. Subtract x from both sides.
2y-x=1,x^{2}+y^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2y-x=1
Solve 2y-x=1 for y by isolating y on the left hand side of the equal sign.
2y=x+1
Subtract -x from both sides of the equation.
y=\frac{1}{2}x+\frac{1}{2}
Divide both sides by 2.
x^{2}+\left(\frac{1}{2}x+\frac{1}{2}\right)^{2}=9
Substitute \frac{1}{2}x+\frac{1}{2} for y in the other equation, x^{2}+y^{2}=9.
x^{2}+\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}=9
Square \frac{1}{2}x+\frac{1}{2}.
\frac{5}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}=9
Add x^{2} to \frac{1}{4}x^{2}.
\frac{5}{4}x^{2}+\frac{1}{2}x-\frac{35}{4}=0
Subtract 9 from both sides of the equation.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\times \frac{5}{4}\left(-\frac{35}{4}\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{1}{2}\right)^{2} for a, 1\times \frac{1}{2}\times \frac{1}{2}\times 2 for b, and -\frac{35}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\times \frac{5}{4}\left(-\frac{35}{4}\right)}}{2\times \frac{5}{4}}
Square 1\times \frac{1}{2}\times \frac{1}{2}\times 2.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-5\left(-\frac{35}{4}\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\times \left(\frac{1}{2}\right)^{2}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1+175}{4}}}{2\times \frac{5}{4}}
Multiply -5 times -\frac{35}{4}.
x=\frac{-\frac{1}{2}±\sqrt{44}}{2\times \frac{5}{4}}
Add \frac{1}{4} to \frac{175}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{2}±2\sqrt{11}}{2\times \frac{5}{4}}
Take the square root of 44.
x=\frac{-\frac{1}{2}±2\sqrt{11}}{\frac{5}{2}}
Multiply 2 times 1+1\times \left(\frac{1}{2}\right)^{2}.
x=\frac{2\sqrt{11}-\frac{1}{2}}{\frac{5}{2}}
Now solve the equation x=\frac{-\frac{1}{2}±2\sqrt{11}}{\frac{5}{2}} when ± is plus. Add -\frac{1}{2} to 2\sqrt{11}.
x=\frac{4\sqrt{11}-1}{5}
Divide -\frac{1}{2}+2\sqrt{11} by \frac{5}{2} by multiplying -\frac{1}{2}+2\sqrt{11} by the reciprocal of \frac{5}{2}.
x=\frac{-2\sqrt{11}-\frac{1}{2}}{\frac{5}{2}}
Now solve the equation x=\frac{-\frac{1}{2}±2\sqrt{11}}{\frac{5}{2}} when ± is minus. Subtract 2\sqrt{11} from -\frac{1}{2}.
x=\frac{-4\sqrt{11}-1}{5}
Divide -\frac{1}{2}-2\sqrt{11} by \frac{5}{2} by multiplying -\frac{1}{2}-2\sqrt{11} by the reciprocal of \frac{5}{2}.
y=\frac{1}{2}\times \frac{4\sqrt{11}-1}{5}+\frac{1}{2}
There are two solutions for x: \frac{-1+4\sqrt{11}}{5} and \frac{-1-4\sqrt{11}}{5}. Substitute \frac{-1+4\sqrt{11}}{5} for x in the equation y=\frac{1}{2}x+\frac{1}{2} to find the corresponding solution for y that satisfies both equations.
y=\frac{4\sqrt{11}-1}{2\times 5}+\frac{1}{2}
Multiply \frac{1}{2} times \frac{-1+4\sqrt{11}}{5}.
y=\frac{1}{2}\times \frac{-4\sqrt{11}-1}{5}+\frac{1}{2}
Now substitute \frac{-1-4\sqrt{11}}{5} for x in the equation y=\frac{1}{2}x+\frac{1}{2} and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{-4\sqrt{11}-1}{2\times 5}+\frac{1}{2}
Multiply \frac{1}{2} times \frac{-1-4\sqrt{11}}{5}.
y=\frac{4\sqrt{11}-1}{2\times 5}+\frac{1}{2},x=\frac{4\sqrt{11}-1}{5}\text{ or }y=\frac{-4\sqrt{11}-1}{2\times 5}+\frac{1}{2},x=\frac{-4\sqrt{11}-1}{5}
The system is now solved.